Extensive Approach to Atrial Fibrillation: Background and Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Zergioti, M.; Kyriakou, M.; Papazoglou, A.S.; Kartas, A.; Moysidis, D.V.; Samaras, A.; Karagiannidis, E.; Kamperidis, V.; Ziakas, A.; Giannakoulas, G. Oral Anticoagulation Choice and Dosage in Very Elderly Patients with Atrial Fibrillation. J. Cardiovasc. Dev. Dis. 2025, 12, 86. https://doi.org/10.3390/jcdd12030086.
- Knez, N.; Kopjar, T.; Tokić, T.; Gašparović, H. Atrial Fibrillation Prediction Model Following Aortic Valve Replacement Surgery. J. Cardiovasc. Dev. Dis. 2025, 12, 52. https://doi.org/10.3390/jcdd12020052.
- Antoun, I.; Kotb, A.I.; Vali, Z.; Abdelrazik, A.; Koev, I.; Safwan, K.; Lau, E.Y.M.; Somani, R.; Ng, G.A. Long-Term Patient-Reported Outcomes After RF and Cryoballoon Ablation for Paroxysmal AF: Effect of Additional Ablations. J. Cardiovasc. Dev. Dis. 2024, 11, 385. https://doi.org/10.3390/jcdd11120385.
- Antoun, I.; Li, X.; Kotb, A.I.; Vali, Z.; Abdelrazik, A.; Koya, A.; Mavilakandy, A.; Koev, I.; Nizam, A.; Eldeeb, H.; et al. P-Wave Parameters Predicting PVI Outcomes for Paroxysmal AF. J. Cardiovasc. Dev. Dis. 2024, 11, 277. https://doi.org/10.3390/jcdd11090277.
- Waśkiewicz, Z.; Bezuglov, E.; Talibov, O.; Gajda, R.; Mukhambetov, Z.; Azerbaev, D.; Bondarev, S. Divergent Cardiac Adaptations in Endurance Sport: AF Markers in Marathon vs Ultramarathon Athletes. J. Cardiovasc. Dev. Dis. 2025, 12, 260. https://doi.org/10.3390/jcdd12070260.
- Kourek, C.; Briasoulis, A.; Tsougos, E.; Paraskevaidis, I. AF in Elite Athletes: Comprehensive Review. J. Cardiovasc. Dev. Dis. 2024, 11, 315. https://doi.org/10.3390/jcdd11100315.
- Antoun, I.; Layton, G.R.; Abdelrazik, A.; Eldesouky, M.; Altoukhy, S.; Zakkar, M.; Somani, R.; Ng, G.A. Predicting Outcomes of External DCCV for AF: Narrative Review. J. Cardiovasc. Dev. Dis. 2025, 12, 168. https://doi.org/10.3390/jcdd12050168.
- Truong, E.T.; Lyu, Y.; Ihdayhid, A.R.; Lan, N.S.R.; Dwivedi, G. AI & Multimodal Imaging to Predict AF Recurrence Post-Ablation. J. Cardiovasc. Dev. Dis. 2024, 11, 291. https://doi.org/10.3390/jcdd11090291.
- Anagnostopoulos, I.; Vrachatis, D.; Kousta, M.; Giotaki, S.; Katsoulotou, D.; Karavasilis, C.; Deftereos, G.; Schizas, N.; Avramides, D.; Giannopoulos, G.; et al. Wearable Devices for Quantifying AF Burden: Systematic Review & Bayesian Meta-analysis. J. Cardiovasc. Dev. Dis. 2025, 12, 122. https://doi.org/10.3390/jcdd12040122.
References
- Van Gelder, I.C.; Rienstra, M.; Bunting, K.V.; Casado-Arroyo, R.; Caso, V.; Crijns, H.J.G.M.; De Potter, T.J.R.; Dwight, J.; Guasti, L.; Hanke, T.; et al. 2024 ESC Guidelines for the management of atrial fibrillation. Eur. Hear. J. 2024, 45, 3314–3414. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Dandamudi, G.; Sood, N.; Hoyt, R.; Tyler, J.; Durrani, S.; Niebauer, M.; Makati, K.; Halperin, B.; Gauri, A.; et al. Cryoballoon ablation as initial therapy for atrial fibrillation. N. Engl. J. Med. 2021, 384, 316–324. [Google Scholar] [CrossRef]
- Andrade, J.G.; Wells, G.A.; Deyell, M.W.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; Khaykin, Y.; et al. Cryoablation or drug therapy for initial treatment of atrial fibrillation. N. Engl. J. Med. 2021, 384, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.V.; Mahaffey, K.W.; Hedlin, H.; Rumsfeld, J.S.; Garcia, A.; Ferris, T.; Balasubramanian, V.; Russo, A.M.; Rajmane, A.; Cheung, L.; et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N. Engl. J. Med. 2019, 381, 1909–1917. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.G.; Deyell, M.W.; Macle, L.; Wells, G.A.; Bennett, M.; Essebag, V.; Champagne, J.; Roux, J.-F.; Yung, D.; Skanes, A.; et al. Progression of atrial fibrillation after cryoablation or drug therapy. N. Engl. J. Med. 2023, 388, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kirchhof, P.; Camm, A.J.; Goette, A.; Brandes, A.; Eckardt, L.; Elvan, A.; Fetsch, T.; van Gelder, I.C.; Haase, D.; Haegeli, L.M.; et al. Early rhythm-control therapy in patients with atrial fibrillation. N. Engl. J. Med. 2020, 383, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Chew, D.S.; Black-Maier, E.; Loring, Z.; Noseworthy, P.A.; Packer, D.L.; Exner, D.V.; Mark, D.B.; Piccini, J.P. Diagnosis-to-ablation time and recurrence of atrial arrhythmia post-ablation: Systematic review/meta-analysis. Circ. Arrhythmia Electrophysiol. 2020, 13, e008128. [Google Scholar] [CrossRef] [PubMed]
- Najeeb, H.; Zaidi, S.F.; Moeed, A.; Yasmin, F.; Asghar, M.S.; Ullah, W.; Alraies, M.C. Diagnosis-to-ablation time to predict AF recurrence following ablation: Systematic review and meta-analysis. Clin. Cardiol. 2025, 48, e70149. [Google Scholar] [CrossRef] [PubMed]
- Pašara, V.; Sattin, T.; De Asmundis, C.; Chierchia, G.-B.; Bala, G. Pulsed field ablation for atrial fibrillation. Expert Rev. Med Devices 2025, 22, 311–320. [Google Scholar] [CrossRef] [PubMed]
Study/Authors | Population and Design | Main Focus | Key Findings | Clinical Implications |
---|---|---|---|---|
Zergioti et al. | Post hoc analysis of MISOAC-AF cohort (n = 450, ≥75 years old) | Oral anticoagulant choice in elderly AF patients | Higher CHA2DS2-VASc/HAS-BLED and antiplatelet use → VKAs; hypertension, prior stroke/bleeding → DOACs. No significant differences in mortality or secondary outcomes between DOACs vs. VKAs or full- vs. reduced-dose DOACs. | Real-world reassurance for anticoagulation decisions in frail elderly with AF and comorbidities. |
Knez et al. | Single-center study (n = 1108)—patients undergoing isolated AVR | Prediction of postoperative AF (POAF) | POAF incidence: 27%. Independent predictors: age, prosthetic valve size, bypass time, delayed sternal closure, ventilation time, ICU stay. AUC ≈ 0.68. | Supports perioperative risk stratification and tailored prevention strategies to reduce POAF-related burden. |
Antoun et al. | Cohort study (n = 207)—first-time PVI for paroxysmal AF | Rhythm control outcomes and quality of life | Both RF and cryoballoon ablation significantly improved QoL (AFEQT, EQ-5D-3L, EQ-VAS) over 12–30 mo. Extra ablation beyond PVI did not add benefit. | Ablation improves QoL; additional lesions may not be necessary. |
Antoun et al. | Observational study (n ≈ 200) | ECG P-wave markers predicting outcomes after PVI | Corrected P-wave duration, amplitude, voltage, and inter-atrial block independently predicted 12-month outcomes. | Simple, widely available ECG parameters can guide patient selection and prognosis. |
Kourek et al. | Review—elite athletes | AF risk and mechanisms in athletes | High-intensity endurance training → 2–10× increased AF risk (especially men); U-shaped dose-risk curve. Mechanisms: bi-atrial dilation, PV stretch, inflammation/fibrosis, vagal tone. | Advocates individualized risk factor management and return-to-play strategies. |
Wąskiewicz et al. | Review—marathon vs. ultramarathon athletes | Cardiac remodeling and AF markers in athletes | Marathon → LA enlargement and fibrosis biomarkers; ultramarathon → RA dilation and systemic inflammation. Limited direct AF incidence data in ultramarathons. | Highlights need for prospective studies and tailored recommendations for endurance athletes. |
Antoun et al. | Narrative review | Predictors of DCCV success and recurrence | Poorer outcomes linked to age, AF duration, obesity, HF, inflammation/fibrosis markers (CRP, galectin-3, PIIINP), LA volume/strain, increased P-waves. Biphasic waveform and AAD support increased success. | Identifies modifiable and nonmodifiable predictors to optimize cardioversion outcomes. |
Truong et al. | Review | Imaging and AI in AF recurrence prediction | Combining speckle-tracking echo, CT, and CMR with explainable ML improves recurrence prediction post-ablation. | Advanced imaging + AI may refine patient selection and timing for ablation. |
Anagnostopoulos et al. | Systematic review and Bayesian meta-analysis (6 studies, n = 448) | Wearable devices for AF burden quantification | Wearables measure AF burden with ~1% error vs. ECG monitoring (~37,000 h recordings). | Validates wearables for clinical and research use in longitudinal AF monitoring. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xhakupi, H.; Anselmino, M. Extensive Approach to Atrial Fibrillation: Background and Future Perspectives. J. Cardiovasc. Dev. Dis. 2025, 12, 401. https://doi.org/10.3390/jcdd12100401
Xhakupi H, Anselmino M. Extensive Approach to Atrial Fibrillation: Background and Future Perspectives. Journal of Cardiovascular Development and Disease. 2025; 12(10):401. https://doi.org/10.3390/jcdd12100401
Chicago/Turabian StyleXhakupi, Henri, and Matteo Anselmino. 2025. "Extensive Approach to Atrial Fibrillation: Background and Future Perspectives" Journal of Cardiovascular Development and Disease 12, no. 10: 401. https://doi.org/10.3390/jcdd12100401
APA StyleXhakupi, H., & Anselmino, M. (2025). Extensive Approach to Atrial Fibrillation: Background and Future Perspectives. Journal of Cardiovascular Development and Disease, 12(10), 401. https://doi.org/10.3390/jcdd12100401