Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates
Abstract
:1. Introduction
2. Pathophysiology of HHD
2.1. LVH
2.2. Vascular Remodelling and Arterial Stiffness
2.3. Myocardial Fibrosis
2.4. Heart Failure
2.5. Arrhythmia Risk
2.6. Neurohormonal Activation
3. Clinical Presentation and Diagnosis
3.1. Clinical Presentation of HHD
3.1.1. Asymptomatic Stage
3.1.2. Symptoms of Heart Failure
3.1.3. Chest Pain and Ischemic Symptoms
3.1.4. Arrhythmias
3.2. Diagnostic Evaluation
3.2.1. History and Physical Examination
- -
- BP monitoring: Accurate BP measurement remains a cornerstone of HHD diagnosis. The 2023 and 2024 guidelines recommend supplementing office BP measurements with 24 h ambulatory BP monitoring (ABPM) and home BP monitoring (HBPM) to detect masked or white-coat hypertension [2,7]. These methods provide a more comprehensive view of BP patterns and can reveal otherwise unrecognised hypertension, critical for cardiovascular risk stratification;
- -
- Assessment of target organ damage: A physical examination should focus on identifying evidence of target organ damage, such as hypertensive retinopathy, carotid, or abdominal bruits (indicating vascular disease), and signs of LVH, such as a displaced or sustained apical impulse. The ESC guidelines place greater emphasis on clinical markers of HMOD during routine physical evaluations compared to the ESH.
3.2.2. Diagnostic Tests
- -
- Echocardiography: This is the gold standard for assessing left ventricular hypertrophy, diastolic dysfunction, and left atrial enlargement [30]. Echocardiography provides detailed information on heart structure and function, measuring parameters such as ventricular wall thickness, chamber sizes, and ejection fraction. Advanced echocardiographic techniques, like strain imaging, can detect subclinical myocardial dysfunction, enabling earlier intervention [31]. The 2023 and 2024 guidelines reinforce the importance of echocardiography in routine HHD evaluation [2,7];
- -
- Electrocardiography (ECG): Though less sensitive than echocardiography, ECG is a valuable tool for identifying LVH and arrhythmias. Specific criteria, such as the Sokolow–Lyon index and Cornell voltage criteria, help detect LVH, while atrial enlargement and arrhythmias, including AF, are also identifiable [32]. ECG remains a key screening tool, particularly in primary care settings;
- -
- Cardiac magnetic resonance imaging (MRI): cardiac MRI is the most accurate method for quantifying myocardial mass and detecting myocardial fibrosis, offering superior detail compared to echocardiography [33]. MRI is particularly valuable when echocardiographic findings are inconclusive or when fibrosis needs to be quantified to assess arrhythmia risk or progression of HHD. The 2023 and 2024 guidelines underscore MRI’s role in advanced diagnostic evaluations for HHD;
- -
- Biomarkers: Biomarkers such as B-type natriuretic peptide (BNP) or NT-proBNP are useful in assessing myocardial stress and heart failure [34]. Elevated levels suggest increased myocardial wall stress and are indicative of heart failure, particularly HFpEF. These biomarkers support diagnostic evaluations and help guide further investigations in symptomatic patients;
- -
- Laboratory Tests: Routine laboratory evaluations for suspected HHD include renal function tests, lipid profiles, and HbA1c to screen for diabetes and dyslipidaemia, both of which are common comorbidities that exacerbate cardiovascular risk. Comprehensive lab work helps identify factors that may worsen HHD and guides risk management strategies [35,36].
4. Risk Stratification and Prognosis
4.1. Cardiovascular Risk Scores
4.2. LVH and Its Prognostic Implications
4.3. Prognosis in Heart Failure and AF
4.4. Impact of Comorbidities on Prognosis
4.5. HMOD in Risk Stratification
5. Management of HHD
5.1. Classification of “Elevated BP” vs. Hypertension in the ESC vs. ESH
5.2. Non-Pharmacological Management
- Dietary modifications:
- 2.
- Sodium restriction:
- 3.
- Physical activity:
- 4.
- Weight reduction:
- 5.
- Smoking cessation and alcohol moderation:
- 6.
- Stress management and yoga:
5.3. Pharmacological Management
5.3.1. First-Line Antihypertensive Agents
5.3.2. Combination Therapy
5.3.3. Beta-Blockers
5.3.4. Sodium–Glucose Co-Transporter-2 (SGLT2) Inhibitors
5.4. Management of Complications
5.4.1. Heart Failure Management
5.4.2. AF Management
5.5. Interventional Therapies
5.6. BP Targets in 2024 Guidelines
6. Special Populations and Complications
6.1. Elderly and Frail Populations
6.2. Patients with Diabetes
6.3. Patients with CKD
6.4. Patients with AF
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABPM | Ambulatory blood pressure monitoring |
ACC | American College of Cardiology |
ACE | Angiotensin-converting enzyme |
AF | Atrial fibrillation |
AHA | American Herat Association |
ALARA | As Low As Reasonably Achievable |
ARB | Angiotensin receptor blocker |
BNP | B-type natriuretic peptide |
BP | Blood pressure |
CAD | Coronary artery disease |
CKD | Chronic kidney disease |
CVD | Cardiovascular disease |
DASH | Dietary Approaches to Stop Hypertension |
DOA | Direct oral anticoagulant |
ECG | Electrocardiography |
ESC | European Society of Cardiology |
ESH | European Society of Hypertension |
ESRD | End-stage renal disease |
HBPM | Home blood pressure monitoring |
HHD | Hypertensive heart disease |
HFpEF | Heart failure with preserved ejection fraction |
HFrEF | Heart failure with reduced ejection fraction |
LVH | Left ventricular hypertrophy |
MRI | Magnetic resonance imaging |
RAAS | Renin–angiotensin–aldosterone system |
SGLT | Sodium–Glucose Co-Transporter-2 |
STEP | Systolic Blood Pressure Intervention Trial |
STEP | Strategy of Blood Pressure Intervention in the Elderly Hypertensive Patients |
References
- Whelton, P.K.; Carey, R.M.; Mancia, G.; Kreutz, R.; Bundy, J. Harmonization of the American College of Cardiology/American Heart Association and European Society of Cardiology/European Society of Hypertension Blood Pressure/Hypertension Guidelines: Comparisons, Reflections, and Recommendations. Circulation 2022, 146, 868–877. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, J.W.; McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canvan, M.; Ceconi, C.; Christodorescu, R.; Daskalopoulou, S.; Ferro, C.; Gerdts, E.; et al. 2024 ESC Guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 2024; Epub ahead of print. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for themanagement of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Al-Khatib, S.M.; Beckman, J.A.; Birtcher, K.; Bozkurt, B.; Brindis, R.; Cigarroa, J.; Curtis, L.; Deswal, A.; Fleisher, L.; et al. Force on Clinical Practice Guidelines. Hypertension 2018, 71, 13–115. [Google Scholar]
- SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl. J. Med. 2015, 373, 2103–2116. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Deng, Y.; Wu, S.; Ren, J.; Sun, G.; Yang, J.; Jiang, Y.; Xu, X.; Wang, T.; et al. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. New Engl. J. Med. 2021, 385, 1268–1279. [Google Scholar] [CrossRef]
- Mancia, G.; Kreutz, R.; Brunstr, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Lorenza Muiesan, M.; Tsioufis, K.; Agabiti-Rosei, E.; Abd Elhady Algharably, E.; et al. ESH Guidelines. 2023. Available online: https://journals.lww.com/jhypertension (accessed on 18 December 2024).
- Carey, R.M.; Calhoun, D.A.; Bakris, G.L.; Brook, R.; Daugherty, S.; Dennison-Himmelfarb, C.; Egan, B.; Flack, J.; Gidding, S.; Judd, E.; et al. Resistant hypertension: Detection, evaluation, and management a scientific statement from the American Heart Association. Hypertension 2018, 72, E53–E90. [Google Scholar] [CrossRef]
- Messerli, F.H.; Bangalore, S. Treatment-resistant hypertension: Another Cinderella story. Eur. Heart J. 2013, 34, 1175–1177. [Google Scholar] [CrossRef]
- Saheera, S.; Krishnamurthy, P. Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transplant. 2020, 29, 0963689720920830. [Google Scholar] [CrossRef] [PubMed]
- Masenga, S.K.; Kirabo, A. Hypertensive heart disease: Risk factors, complications and mechanisms. Front. Cardiovasc. Med. 2023, 10, 1205475. [Google Scholar] [CrossRef]
- Martin, T.G.; Juarros, M.A.; Leinwand, L.A. Regression of cardiac hypertrophy in health and disease: Mechanisms and therapeutic potential. Nat. Rev. Cardiol. 2023, 20, 347–363. [Google Scholar] [CrossRef]
- Sayin, B.Y.; Oto, A. Left Ventricular Hypertrophy: Etiology-Based Therapeutic Options. Cardiol. Ther. 2022, 11, 203–230. [Google Scholar] [CrossRef] [PubMed]
- Lorell, B.H.; Carabello, B.A. Left Ventricular Hypertrophy Pathogenesis, Detection, and Prognosis. 2000. Available online: https://www.ahajournals.org/doi/10.1161/01.CIR.102.4.470 (accessed on 21 December 2024).
- Humphrey, J.D. Mechanisms of vascular remodeling in hypertension. Am. J. Hypertens. 2021, 34, 432–441. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Segers, P.; Hughes, T.; Townsend, R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1237–1263. [Google Scholar] [CrossRef]
- Gallo, G.; Volpe, M.; Savoia, C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front. Med. 2022, 8, 798958. [Google Scholar] [CrossRef]
- Kong, P.; Christia, P.; Frangogiannis, N.G. The pathogenesis of cardiac fibrosis. Cell. Mol. Life Sci. 2014, 71, 549–574. [Google Scholar] [CrossRef]
- Bunda, S.; Liu, P.; Wang, Y.; Hinek, A. Aldosterone induces elastin production in cardiac fibroblasts through activation of insulin-like growth factor-I receptors in a mineralocorticoid receptor-independent manner. Am. J. Pathol. 2007, 171, 809–819. [Google Scholar] [CrossRef]
- Messerli, F.H.; Rimoldi, S.F.; Bangalore, S. Mini-Focus Issue: Cardiovascular Comorbidities The Transition From Hypertension to Heart Failure Contemporary Update. 2017. Available online: https://www.acc.org/jacc-journals-cme (accessed on 22 December 2024).
- Ekström, M.; Hellman, A.; Hasselström, J.; Hage, C.; Kahan, T.; Ugander, M.; Wallén, H.; Persson, H.; Linde, C. The transition from hypertension to hypertensive heart disease and heart failure: The PREFERS Hypertension study. ESC Heart Fail 2020, 7, 737–746. [Google Scholar] [CrossRef]
- Vaidya, K.; Semsarian, C.; Chan, K.H. Atrial Fibrillation in Hypertrophic Cardiomyopathy. Heart Lung Circ. 2017, 26, 975–982. [Google Scholar] [CrossRef]
- Ames, M.K.; Atkins, C.E.; Pitt, B. The renin-angiotensin-aldosterone system and its suppression. J. Vet. Intern. Med. 2019, 33, 363–382. [Google Scholar] [CrossRef]
- Pisano, A.; Iannone, L.F.; Leo, A. Russo, E.; Coppolino, G.; Bilignano, D. Renal denervation for resistant hypertension. Cochrane Database Syst. Rev. 2021, 11, CD011499. [Google Scholar] [CrossRef]
- Hartupee, J.; Mann, D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2016, 14, 30–38. [Google Scholar] [CrossRef]
- Borovac, J.A.; D’Amario, D.; Bozic, J.; Glavas, D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J. Cardiol. 2020, 12, 373–408. [Google Scholar] [CrossRef] [PubMed]
- Maron, M.S.; Maron, B.J.; Harrigan, C.; Buros, J.; Gibson, C.; Olivotto, I.; Biller, L.; Lesser, J.; Udelson, J.; Manning, W.; et al. Hypertrophic Cardiomyopathy Phenotype Revisited After 50 Years With Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2009, 54, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Aronow, W.S. Hypertension associated with atrial fibrillation. Ann. Transl. Med. 2017, 5, 457. [Google Scholar] [CrossRef] [PubMed]
- Verdecchia, P.; Angeli, F.; Reboldi, G. Hypertension and atrial fibrillation: Doubts and certainties from basic and clinical studies. Circ. Res. 2018, 122, 352–368. [Google Scholar] [CrossRef]
- Nagueh, S.F. Left Ventricular Diastolic Function: Understanding Pathophysiology, Diagnosis, and Prognosis With Echocardiography. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef]
- Trivedi, S.J.; Altman, M.; Stanton, T.; Thomas, L. Echocardiographic Strain in Clinical Practice. Heart Lung Circ. 2019, 28, 1320–1330. [Google Scholar] [CrossRef]
- Bayram, N.; Akoğlu, H.; Sanri, E.; Karacabey, S.; Efeoglu, M.; Onur, O.; Denizbasi, A. Diagnostic Accuracy of the Electrocardiography Criteria for Left Ventricular Hypertrophy (Cornell Voltage Criteria, Sokolow-Lyon Index, Romhilt-Estes, and Peguero-Lo Presti Criteria) Compared to Transthoracic Echocardiography. Cureus 2021, 14, e13883. [Google Scholar] [CrossRef] [PubMed]
- Karamitsos, T.D.; Arvanitaki, A.; Karvounis, H.; Neubauer, S.; Ferreira, V. Myocardial Tissue Characterization and Fibrosis by Imaging. JACC: Cardiovasc. Imaging 2020, 13, 1221–1234. [Google Scholar] [CrossRef] [PubMed]
- Grewal, J.; McKelvie, R.; Lonn, E.; Tait, P.; Carlsson, J.; Gianni, M.; Jarnert, C.; Persson, H. BNP and NT-proBNP predict echocardiographic severity of diastolic dysfunction. Eur. J. Heart Fail 2008, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Lawson, C.A.; Zaccardi, F.; Squire, I.; Okhai, H.; Davies, M.; Huang, W.; Mamas, M.; Lam, C.S.; Khunti, K.; Kadam, U.T. Risk Factors for Heart Failure: 20-Year Population-Based Trends by Sex, Socioeconomic Status, and Ethnicity. Circ. Heart Fail. 2020, 13, E006472. [Google Scholar] [CrossRef]
- Roumie, C.L.; Hung, A.M.; Russell, G.B.; Basile, J.; Kreider, K.; Nord, J.; Ramsey, T.; Rastogi, A.; Sweeney, M.; Tamariz, L. Blood Pressure Control and the Association with Diabetes Mellitus Incidence: Results from SPRINT Randomized Trial. Hypertension 2020, 75, 331–338. [Google Scholar] [CrossRef]
- Tokgozoglu, L.; Torp-Pedersen, C. Redefining cardiovascular risk prediction: Is the crystal ball clearer now? Eur. Heart J. 2021, 42, 2468–2471. [Google Scholar] [CrossRef] [PubMed]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.; Gibbons, R.; Greenland, P.; Lackland, D.; Levy, D.; O’Donnell, C.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American college of cardiology/American heart association task force on practice guidelines. Circulation 2014, 129, S49–S73. [Google Scholar] [CrossRef]
- Jenkins, S.; Cross, A.; Osman, H.; Salim, F.; Lane, D.; Bernieh, D.; Khunti, K.; Gupta, P. Effectiveness of biofeedback on blood pressure in patients with hypertension: Systematic review and meta-analysis. J. Hum. Hypertens. 2024, 38, 719–727. [Google Scholar] [CrossRef]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Reinier, K.; Dervan, C.; Singh, T.; Uy-Evanado, A.; Lai, S.; Gunson, K.; Jui, J.; Chugh, S. Increased left ventricular mass and decreased left ventricular systolic function have independent pathways to ventricular arrhythmogenesis in coronary artery disease. Heart Rhythm. 2011, 8, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.W.; Larson, M.G.; Benjamin, E.J.; Levy, D. Increased Left Ventricular Mass and Hypertrophy Are Associated With Increased Risk for Sudden Death. J. Am. Coll. Cardiol. 1998, 32, 1454–1459. [Google Scholar] [CrossRef] [PubMed]
- Bing, R.; Dweck, M.R. Myocardial fibrosis: Why image, how to image and clinical implications. Heart 2019, 105, 1832–1840. [Google Scholar] [CrossRef]
- Zhan, Q.; Peng, W.; Wang, S.; Gao, J. Heart Failure with Preserved Ejection Fraction: Pathogenesis, Diagnosis, Exercise, and Medical Therapies. J. Cardiovasc. Transl. Res. 2023, 16, 310–326. [Google Scholar] [CrossRef]
- Liang, M.; Bian, B.; Yang, Q. Characteristics and long-term prognosis of patients with reduced, mid-range, and preserved ejection fraction: A systemic review and meta-analysis. Clin. Cardiol. 2022, 45, 5–17. [Google Scholar] [CrossRef]
- Miró, Ò.; Conde-Martel, A.; Llorens, P.; Salamanca-Bautista, P.; Gil, V.; González-Franco, Á.; Jacob, J.; Casado, J.; Tost, J.; Montero-Perez-Barquero, M.; et al. The influence of comorbidities on the prognosis after an acute heart failure decompensation and differences according to ejection fraction: Results from the EAHFE and RICA registries. Eur. J. Intern. Med. 2023, 111, 97–104. [Google Scholar] [CrossRef]
- Papademetriou, V.; Zaheer, M.; Doumas, M.; Lovato, L.; Applegate, W.; Tsioufis, C.; Mottle, A.; Punthakee, Z.; Cushman, M. Cardiovascular outcomes in action to control cardiovascular risk in diabetes: Impact of blood pressure level and presence of kidney disease. Am. J. Nephrol. 2016, 43, 271–280. [Google Scholar] [CrossRef]
- Izraiq, M.; Alawaisheh, R.; Ibdah, R.; Dabbas, A.; Ahmed, Y.; Mughrabi Sabbagh, A.; Zuriak, A.; Ababneh, M.; Toubasi, A.; Al-Bkoor, B. Machine Learning-Based Mortality Prediction in Chronic Kidney Disease among Heart Failure Patients: Insights and Outcomes from the Jordanian Heart Failure Registry. Medicina (Lithuania) 2024, 60, 831. [Google Scholar] [CrossRef] [PubMed]
- Hagi, K.; Kochi, K.; Watada, H.; Haku, K.; Ueki, K. Effect of patient characteristics on the efficacy and safety of imeglimin monotherapy in Japanese patients with type 2 diabetes mellitus: A post-hoc analysis of two randomized, placebo-controlled trials. J. Diabetes Investig. 2023, 14, 1101–1109. [Google Scholar] [CrossRef]
- Campbell-Quintero, S.; Echeverría, L.E.; Gómez-Mesa, J.E.; Rivera-Toquica, A.; Renteria-Asprilla, C.; Lopez-Garzon, N.; Alcala-Hernandez, A.; Accini-Mendoza, J.; BAquero-Lozano, G.; Martinez-Carvajal, A.; et al. Comorbidity profile and outcomes in patients with chronic heart failure in a Latin American country: Insights from the Colombian heart failure registry (RECOLFACA). Int. J. Cardiol. 2023, 378, 123–129. [Google Scholar] [CrossRef]
- Maniero, C.; Lopuszko, A.; Papalois, K.B.; Gupta, A.; Kapil, A.; Khanji, M. Non-pharmacological factors for hypertension management: A systematic review of international guidelines. Eur. J. Prev. Cardiol. 2023, 30, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.; Collins, K.; Dennison Himmelfarb, C.; DePalma, S.; Gidding, S.; Jamerson, K.; Jones, D.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2018, 138, e426–e483. [Google Scholar]
- Khani Jeihooni, A.; Sobhani, A.; Afzali Harsini, P.; Amirkhani, M. Effect of educational intervention based on PRECEDE model on lifestyle modification, self-management behaviors, and hypertension in diabetic patients. BMC Endocr. Disord. 2023, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.M.; Moullec, G.; Lavoie, K.L.; Gour-Provençal, G.; Bacon, S. The evolution of a Canadian hypertension education program recommendation: The impact of resistance training on resting blood pressure in adults as an example. Can. J. Cardiol. 2013, 29, 622–627. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. Exercise and Hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Tsoi, K.; Lam, A.; Tran, J.; Hao, Z.; Yiu, K.; Chia, Y.; Turana, Y.; Siddique, S.; Zhang, Y.; Cheng, H.; et al. The Western and Chinese exercise training for blood pressure reduction among hypertensive patients: An overview of systematic reviews. J. Clin. Hypertens. 2023, 26, 1327–1341. [Google Scholar] [CrossRef]
- Kodela, P.; Okeke, M.; Guntuku, S.; Lingamsetty, S.; Slonovschi, E. Management of Hypertension With Non-pharmacological Interventions: A Narrative Review. Cureus 2023, 15, e43022. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, E.L.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C. Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog. Cardiovasc. Dis. 2018, 61, 68–75. [Google Scholar] [CrossRef]
- Ballut, O.M.; Alzahrani, A.A.; Alzahrani, R.A.; Alzahrani, A.T.; Alzahrani, R.A.; Alzahrani, M.F.; Alzahrani, Y.K.; Alghamdi, N.; Alghamdi, R. The Impact of Non-pharmacological Interventions on Blood Pressure Control in Patients With Hypertension: A Systematic Review. Cureus 2023, 15, e48444. [Google Scholar] [CrossRef] [PubMed]
- Hadaye, R.; Shastri, S.; Salagre, S. Effect of yoga intervention in the management of hypertension: A preventive trial. Int. J. Prev. Med. 2021, 12, 55. [Google Scholar] [CrossRef]
- Nakagawa, N.; Sato, N.; Saijo, Y.; Morimoto, H.; Koyama, S.; Ogawa, Y.; Uekita, K.; Maruyama, J.; Ohta, T.; Nakamura, Y. Assessment of suitable antihypertensive therapies: Combination with high-dose amlodipine/irbesartan vs triple combination with amlodipine/irbesartan/indapamide (ASAHI-AI study). J. Clin. Hypertens. 2020, 22, 1577–1584. [Google Scholar] [CrossRef]
- Ziff, O.J.; Samra, M.; Howard, J.P.; Bromage, D.; Rhuschitzka, F.; Francis, D.; Kotecha, D. Beta-blocker efficacy across different cardiovascular indications: An umbrella review and meta-analytic assessment. BMC Med. 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.; Bonaca, M.; Mosenzon, O.; Kato, E.; Cahn, A.; Furtado, R.; et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Mende, C.W. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv. Ther. 2022, 39, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Naser, J.A.; Harada, T.; Reddy, Y.N.; Pislaru, S.; Michelena, H.; Scott, C.; Kennedy, A.; Pellikka, P.; Nkomo, V.; Eleid, M.; et al. Prevalence of HFpEF in Isolated Severe Secondary Tricuspid Regurgitation. JAMA Cardiol. 2024, e243767. [Google Scholar] [CrossRef] [PubMed]
- Schnell, O.; Barnard-Kelly, K.; Battelino, T.; Ceriello, A.; Larsson, H.; Fernandez-Fernandez, B.; Forst, T.; Frias, J.; Gavin, J.; Giorgino, F.; et al. CVOT Summit Report 2023, new cardiovascular, kidney, and metabolic outcomes. Cardiovasc. Diabetol. 2024, 23, 104. [Google Scholar] [CrossRef]
- Tzeis, S.; Gerstenfeld, E.P.; Kalman, J.; Saad, E.; Seperhi Shamloo, A.; Andrade, J.; Barbhaiya, C.; Baykaner, T.; Boveda, S.; Calkins, H.; et al. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024, 26, euae043. [Google Scholar] [CrossRef] [PubMed]
- Kandzari, D.E.; Townsend, R.R.; Kario, K.; Mahfoud, F.; Weber, M.; Schmeider, R.; Pocock, S.; Tsioufis, K.; Konstantinidis, D.; Choi, J.; et al. Safety and Efficacy of Renal Denervation in Patients Taking Antihypertensive Medications. J. Am. Coll. Cardiol. 2023, 82, 1809–1823. [Google Scholar] [CrossRef] [PubMed]
Criteria | 2018 Guidelines | ESH 2023 | ESC 2024 |
---|---|---|---|
Risk Score Algorithm | Score (older version of SCORE2) | SCORE2 (10-year cardiovascular risk) | SCORE2 |
Regional Variations | No | No | Yes, across Europe |
Inclusion of HMOD | Moderate emphasis | Moderate emphasis, traditional techniques | Strong emphasis, with advanced imaging |
BP Target for High Risk | <140 mmHg | <130 mmHg | <120–129 mmHg |
Medications | Description |
---|---|
ACE Inhibitors and ARBs | Widely used for their ability to reduce myocardial remodelling, improve left ventricular function, and lower BP. Particularly effective in patients with LVH or high cardiovascular risk. |
CCBs | Effective at lowering BP by reducing systemic vascular resistance. Dihydropyridines (e.g., amlodipine) are preferred in patients with angina or coronary artery disease. |
Thiazide and Thiazide-like Diuretics | Drugs, such as chlorthalidone, reduce BP by promoting sodium excretion. |
Population | ESC 2018 | ESC 2024 | ESH 2018 | ESH 2023 |
---|---|---|---|---|
General population | <140/90 mmHg | 120–129 mmHg | <140/90 mmHg | <130 mmHg |
High risk (CVD/CKD/Diabetes) | <140 mmHg | <120–129 mmHg | <140/90 mmHg | <130 mmHg |
Older adults (>65 years) | <140–150 mmHg | <140 mmHg | <140–150 mmHg | <140 mmHg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.X. Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates. J. Cardiovasc. Dev. Dis. 2025, 12, 46. https://doi.org/10.3390/jcdd12020046
Wang BX. Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates. Journal of Cardiovascular Development and Disease. 2025; 12(2):46. https://doi.org/10.3390/jcdd12020046
Chicago/Turabian StyleWang, Brian Xiangzhi. 2025. "Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates" Journal of Cardiovascular Development and Disease 12, no. 2: 46. https://doi.org/10.3390/jcdd12020046
APA StyleWang, B. X. (2025). Diagnosis and Management of Hypertensive Heart Disease: Incorporating 2023 European Society of Hypertension and 2024 European Society of Cardiology Guideline Updates. Journal of Cardiovascular Development and Disease, 12(2), 46. https://doi.org/10.3390/jcdd12020046