Effect of Peri-Interventional Blood Loss on In-Stent Thrombosis After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Patient Population
2.3. Procedural Details
2.4. Medical Treatment
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Clinical Outcomes
3.3. Predictors of Angiographically-Detected In-Stent Stenosis
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell. Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef] [PubMed]
- Kadakia, M.B.; Desai, N.R.; Alexander, K.P.; Chen, A.Y.; Foody, J.M.; Cannon, C.P.; Wiviott, S.D.; Scirica, B.M.; National Cardiovascular Data Registry. Use of anticoagulant agents and risk of bleeding among patients admitted with myocardial infarction: A report from the NCDR ACTION Registry—GWTG (National cardiovascular Data Registry Acute Coronary Treatment and Intervention Outcomes Network Registry—Get With the Guidelines). JACC Cardiovasc. Interv. 2010, 3, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Fitchett, D. The impact of bleeding in patients with acute coronary syndromes: How to optimize the benefits of treatment and minimize the risk. Can. J. Cardiol. 2007, 23, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Denes, L.; Entz, L.; Jancsik, V. Restenosis and therapy. Int. J. Vasc. Med. 2012, 2012, 406236. [Google Scholar] [CrossRef] [PubMed]
- Shahsanaei, F.; Gharibzadeh, A.; Behrooj, S.; Abbaszadeh, S.; Nourmohammadi, M. A systematic review and bioinformatic study on clinical, paraclinical, and genetic factors predisposing to stent restenosis following percutaneous coronary intervention. BMC Cardiovasc. Disord. 2024, 24, 304. [Google Scholar] [CrossRef] [PubMed]
- Anghel, L.; Tudurachi, B.S.; Tudurachi, A.; Zăvoi, A.; Clement, A.; Roungos, A.; Benchea, L.C.; Zota, I.M.; Prisacariu, C.; Sascău, R.A.; et al. Patient-Related Factors Predicting Stent Thrombosis in Percutaneous Coronary Interventions. J. Clin. Med. 2023, 12, 7367. [Google Scholar] [CrossRef]
- Tyczyński, M.; Kern, A.; Buller, P.; Wańha, W.; Gil, R.J.; Bil, J. Clinical Outcomes and Prognostic Factors in Complex, High-Risk Indicated Procedure (CHIP) and High-Bleeding-Risk (HBR) Patients Undergoing Percutaneous Coronary Intervention with Sirolimus-Eluting Stent Implantation: 4-Year Results. J. Clin. Med. 2023, 12, 5313. [Google Scholar] [CrossRef]
- Condello, F.; Spaccarotella, C.; Sorrentino, S.; Indolfi, C.; Stefanini, G.G.; Polimeni, A. Stent Thrombosis and Restenosis with Contemporary Drug-Eluting Stents: Predictors and Current Evidence. J. Clin. Med. 2023, 12, 1238. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Simoons, M.L.; Chaitman, B.R.; White, H.D.; Writing Group on the Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction; Thygesen, K.; Alpert, J.S.; White, H.D.; et al. Third universal definition of myocardial infarction. Eur. Heart J. 2012, 33, 2551–2567. [Google Scholar] [CrossRef] [PubMed]
- Moscucci, M.; Ricciardi, M.; Eagle, K.A.; Kline, E.; Bates, E.R.; Werns, S.W.; Karavite, D.; Muller, D.W. Frequency, predictors, and appropriateness of blood transfusion after percutaneous coronary interventions. Am. J. Cardiol. 1998, 81, 702–707. [Google Scholar] [CrossRef]
- Kim, P.; Dixon, S.; Eisenbrey, A.B.; O’Malley, B.; Boura, J.; O’Neill, W. Impact of acute blood loss anemia and red blood cell transfusion on mortality after percutaneous coronary intervention. Clin. Cardiol. 2007, 30 (Suppl. S2), II-35–II-43. [Google Scholar] [CrossRef]
- Denes, L.; Bori, Z.; Csonka, E.; Entz, L.; Nagy, Z. Reverse regulation of endothelial cells and myointimal hyperplasia on cell proliferation by a heatshock protein-coinducer after hypoxia. Stroke 2008, 39, 1022–1024. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Voors, A.; Okonko, D.; Clark, A.L.; James, M.K.; von Haehling, S.; Kjekshus, J.; Ponikowski, P.; Dickstein, K.; OPTIMAAL Investigators. Prevalence, incidence, and prognostic value of anaemia in patients after an acute myocardial infarction: Data from the OPTIMAAL trial. Eur. Heart J. 2009, 30, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Craig, K.J.; Williams, J.D.; Riley, S.G.; Smith, H.; Owens, D.R.; Worthing, D.; Cavill, I.; Phillips, A.O. Anemia and diabetes in the absence of nephropathy. Diabetes Care 2005, 28, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Bassand, J.P.; Afzal, R.; Eikelboom, J.; Wallentin, L.; Peters, R.; Budaj, A.; Fox, K.A.; Joyner, C.D.; Chrolavicius, S.; Granger, C.B.; et al. Relationship between baseline haemoglobin and major bleeding complications in acute coronary syndromes. Eur. Heart J. 2010, 31, 50–58. [Google Scholar] [CrossRef]
- McLean, E.; Cogswell, M.; Egli, I.; Wojdyla, D.; de Benoist, B. Worldwide prevalence of anaemia, WHO vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr. 2009, 12, 444–454. [Google Scholar] [CrossRef]
- Ntima, G.; Bepouka, B.; Tixier, V.; Ferrier, N.; Marcaggi, X. Anemia in patients with acute coronary syndrome in the Vichy Hospital center. Ann. Cardiol. Angeiol. 2018, 67, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Miyauchi, K.; Daida, H. Gender differences in the clinical features and outcomes of patients with coronary artery disease. Expert Rev. Cardiovasc. Ther. 2019, 17, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Koh, Y.S.; Kim, P.J.; Kim, H.Y.; Park, C.S.; Lee, J.M.; Kim, D.B.; Yoo, K.D.; Jeon, D.S.; Her, S.H.; et al. Incidence, implications, and predictors of stent thrombosis in acute myocardial infarction. Am. J. Cardiol. 2016, 117, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Açikgöz, S.K.; Açikgöz, E.; Çiçek, G. Value of CHA2DS2-VASc score for prediction and ruling out of acute stent thrombosis after primary percutaneous coronary intervention. Angiology 2020, 71, 411–416. [Google Scholar] [CrossRef]
- Ribichini, F.; Tomai, F.; Pesarini, G.; Zivelonghi, C.; Rognoni, A.; De Luca, G.; Boccuzzi, G.; Presbitero, P.; Ferrero, V.; Ghini, A.S.; et al. Long-term clinical follow-up of the multicentre, randomized study to test immunosuppressive therapy with oral prednisone for the prevention of restenosis after percutaneous coronary interventions: Cortisone plus BMS or des versus BMS alone to EliminAte Restenosis (CEREA-DES). Eur. Heart J. 2013, 34, 1740–1748. [Google Scholar] [CrossRef] [PubMed]
- Zbinden, R.; von Felten, S.; Wein, B.; Tueller, D.; Kurz, D.J.; Reho, I.; Galatius, S.; Alber, H.; Conen, D.; Pfisterer, M.; et al. Impact of stent diameter and length on in-stent restenosis after des vs BMS implantation in patients needing large coronary stents-A clinical and health-economic evaluation. Cardiovasc. Ther. 2017, 35, 19–25. [Google Scholar] [CrossRef]
- Varenne, O.; Cook, S.; Sideris, G.; Kedev, S.; Cuisset, T.; Carrié, D.; Hovasse, T.; Garot, P.; El Mahmoud, R.; Spaulding, C.; et al. Drug-eluting stents in elderly patients with coronary artery disease (SENIOR): A randomised single-blind trial. Lancet 2018, 391, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.W.; Cheng, F.W.; Choi, A.Y.; Fong, S.T.; Yu, C.M.; Yan, B.P. Clinical, humanistic, and economic outcomes between drug-eluting stent (DES) and bare metal stent (BMS): 18-month follow-up study. J. Med. Econ. 2017, 20, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, X.; Yang, B.; Wang, Y.; Gao, P.; Chen, Y.; Zhu, F.; Ma, Y.; Chi, H.; Zhang, X.; et al. Validation and comparison of drug eluting stent to bare metal stent for restenosis rates following vertebral artery ostium stenting: A single-center real-world study. Interv. Neuroradiol. 2020, 26, 629–636. [Google Scholar] [CrossRef]
- Mori, F.; Tsurumi, Y.; Hagiwara, N.; Kasanuki, H. Impact of post-dilatation with a focal expanding balloon for optimization of intracoronary stenting. Heart Vessels 2007, 22, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Latif, F.; Uyeda, L.; Edson, R.; Bhatt, D.L.; Goldman, S.; Holmes, D.R.; Rao, S.V.; Shunk, K.; Aggarwal, K.; Uretsky, B.; et al. Stent-only versus adjunctive balloon angioplasty approach for saphenous vein graft percutaneous coronary intervention: Insights from DIVA trial. Circ. Cardiovasc. Interv. 2020, 13, e008494. [Google Scholar] [CrossRef]
- Romagnoli, E.; Sangiorgi, G.M.; Cosgrave, J.; Guillet, E.; Colombo, A. Drug-eluting stenting: The case for post-dilation. JACC Cardiovasc. Interv. 2008, 1, 22–31. [Google Scholar] [CrossRef]
- Besli, F.; Gungoren, F.; Kocaturk, O.; Tanriverdi, Z.; Tascanov, M.B. The impact of post-dilatation on periprocedural outcomes during carotid artery stenting: A single-center experience. Atherosclerosis 2019, 290, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Mamas, M.A.; Ratib, K.; Routledge, H.; Neyses, L.; Fraser, D.G.; de Belder, M.; Ludman, P.F.; Nolan, J.; British Cardiovascular Intervention Society and the National Institute for Cardiovascular Outcomes Research. Influence of arterial access site selection on outcomes in primary percutaneous coronary intervention: Are the results of randomized trials achievable in clinical practice? JACC Cardiovasc. Interv. 2013, 6, 698–706. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef]
- Stortecky, S.; Wenaweser, P.; Diehm, N.; Pilgrim, T.; Huber, C.; Rosskopf, A.B.; Khattab, A.A.; Buellesfeld, L.; Gloekler, S.; Eberle, B.; et al. Percutaneous Management of Vascular Complications in Patients Undergoing Transcatheter Aortic Valve Implantation. JACC Cardiovasc. Interv. 2012, 5, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Jeong, M.H.; Choi, Y.H.; Song, J.A.; Kim, D.H.; Lee, K.H.; Yamanaka, F.; Lee, M.G.; Park, K.H.; Sim, D.S.; et al. Relation between Anemia and Vulnerable Coronary Plaque Components in Patients with Acute Coronary Syndrome: Virtual Histology-Intravascular Ultrasound Analysis. J. Korean Med. Sci. 2012, 27, 370–376. [Google Scholar] [CrossRef]
- Go, A.S.; Yang, J.; Ackerson, L.M.; Lepper, K.; Robbins, S.; Massie, B.M.; Shlipak, M.G. Hemoglobin Level, Chronic Kidney Disease, and the Risks of Death and Hospitalization in Adults with Chronic Heart Failure: The Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation 2006, 113, 2713–2723. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J.; Wharton, J.; Howard, L.; Gibbs, J.S.R.; Vonk-Noordegraaf, A.; Wilkins, M.R. Iron Deficiency in Pulmonary Arterial Hypertension: A Potential Therapeutic Target. Eur. Respir. J. 2011, 38, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Moses, J.W.; Leon, M.B.; Popma, J.J.; Fitzgerald, P.J.; Holmes, D.R.; O’Shaughnessy, C.; Caputo, R.P.; Kereiakes, D.J.; Williams, D.O.; Teirstein, P.S.; et al. Sirolimus-Eluting Stents versus Standard Stents in Patients with Stenosis in a Native Coronary Artery. N. Engl. J. Med. 2003, 349, 1315–1323. [Google Scholar] [CrossRef]
- Shlofmitz, E.; Iantorno, M.; Waksman, R. Restenosis of Drug-Eluting Stents: A New Classification System Based on Disease Mechanism to Guide Treatment and State-of-The-Art Review. Circ. Cardiovasc. Interv. 2019, 12, e007023. [Google Scholar] [CrossRef] [PubMed]
<1 mmol/L | 1–2 mmol/L | >2 mmol/L | p-Value | |
---|---|---|---|---|
Variables, N (%) | (n = 694) | (n = 151) | (n = 36) | |
Sex, male | 545 (78.5) | 113 (74.8) | 19 (52.8) | 0.001 |
Age, year | 61 ± 11.6 | 61.6 ± 10.3 | 61.3 ± 14.5 | 0.840 |
Initial hemoglobin (mmol/L) | 8.6 ± 0.9 | 8.7 ± 1.0 | 8.5 ± 1.1 | 0.543 |
LV ejection Fraction, % | 48.7 ± 10.3 | 47.5 ± 11.5 | 43.4 ± 11 | 0.009 |
STEMI | 360 (51.9) | 84 (55.6) | 20 (55.6) | 0.661 |
NSTEMI | 334 (48.1) | 67 (44.4) | 16 (44.4) | 0.661 |
History of coronary artery disease | 50 (7.2) | 12 (7.9) | 1 (2.8) | 0.553 |
Hypertension | 357 (51.4) | 72 (47.7) | 19 (52.8) | 0.685 |
Diabetes mellitus | 217 (31.3) | 45 (29.8) | 13 (36.1) | 0.762 |
Dyslipidemia | 258 (37.2) | 61 (40.4) | 22 (61.1) | 0.014 |
history of PAD | 11 (1.6) | 2 (1.3) | 2 (5.6) | 0.185 |
history of CKD | 102 (14.7) | 38 (25.2) | 14 (38.9) | 0.001 |
Smoking history | 343 (49.4) | 64 (42.4) | 18 (50) | 0.285 |
Current | 270 (38.9) | 56 (37.1) | 16 (44.4) | 0.714 |
Alcoholic history | 193 (27.8) | 32 (21.2) | 3 (8.3) | 0.012 |
Hemoglobin Loss | p-Value | |||
---|---|---|---|---|
Variables, N (%) | <1 mmol/L | 1–2 mmol/L | >2 mmol/L | |
(n = 694) | (n = 151) | (n = 36) | ||
Muli-vessel disease | 266 (38.3) | 81 (53.6) | 23 (63.9) | 0.001 |
No. of vessels | 1.5 ± 0.7 | 1.8 ± 0.86 | 1.9 ± 0.82 | <0.001 |
Target vessel | ||||
LM | 12 (1.7) | 8 (5.3) | 3 (8.3) | 0.004 |
LAD | 361 (52) | 82 (54.3) | 21 (58.3) | 0.689 |
LCX | 190 (27.4) | 38 (25.2) | 10 (27.8) | 0.853 |
RCA | 261 (37.6) | 61 (40.4) | 13 (36.1) | 0.791 |
RAMUS | 9 (1.3) | 1 (0.7) | 1 (2.8) | 0.572 |
BMS | 138 (19.9) | 49 (32.5) | 16 (44.4) | <0.001 |
DES | 558 (80.4) | 104 (68.9) | 20 (55.6) | <0.001 |
Post-dilatation balloon | 309 (44.5) | 45 (29.8) | 9 (25) | 0.001 |
Dissection | 48 (6.9) | 22 (14.6) | 2 (5.6) | 0.007 |
Angiographic success | 691 (99.6) | 151 (100) | 35 (97.2) | 0.082 |
Clinical success | 693 (99.9) | 151 (100) | 35 (97.2) | 0.004 |
Univariate | p-Value | Multivariate | p-Value | |||
---|---|---|---|---|---|---|
HR | 95% CI | HR | 95% CI | |||
Anemia | 1.57 | 1.21–2.04 | 0.001 | 1.612 | 1.25–2.06 | <0.001 |
HB loss | 1.19 | 1.07–1.33 | 0.001 | 1.17 | 1.04–1.31 | 0.008 |
Age | 0.985 | 0.97–0.997 | 0.014 | 0.992 | 0.97–1.0 | 0.299 |
LV ejection Fraction, % | 0.985 | 0.97–0.99 | 0.012 | 0.986 | 0.97–1.0 | 0.043 |
Diabetes mellitus | 1.32 | 1.02–1.71 | 0.035 | 1.071 | 0.79–1.44 | 0.650 |
Dyslipidemia | 1.32 | 1.02–1.71 | 0.029 | 1.026 | 0.72–1.46 | 0.885 |
history of CKD | 1.4 | 1.08–1.82 | 0.011 | 1.259 | 0.88–1.80 | 0.208 |
Smoking history | 1.33 | 1.02–1.72 | 0.030 | 0.997 | 0.54–1.83 | 0.993 |
Current | 1.37 | 1.04–1.81 | 0.022 | 0.784 | 0.42–1.45 | 0.438 |
Alcoholic history | 1.43 | 1.01–2.03 | 0.033 | 0.989 | 0.61–1.59 | 0.965 |
Multi-vessel disease | 1.4 | 1.08–1.82 | 0.009 | 1.014 | 0.56–1.82 | 0.962 |
No. of vessels | 1.23 | 1.06–1.43 | 0.006 | 1.069 | 0.75–1.50 | 0.704 |
LM | 3.24 | 1.84–5.69 | <0.001 | 3.254 | 1.74–6.08 | <0.001 |
BMS | 1.38 | 1.07–1.79 | 0.011 | 0.526 | 0.06–4.22 | 0.545 |
DES | 0.72 | 0.56–0.093 | 0.014 | 0.463 | 0.05–3.78 | 0.472 |
Post-dilatation balloon | 0.74 | 0.58–1.04 | 0.050 | 0.889 | 0.58–1.34 | 0.574 |
Dissection | 1.64 | 1.05–2.57 | 0.029 | 1.863 | 1.14–3.04 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, A.; Mashaly, A.; Alkomi, U.; Christoph, M.; Abdelsamad, A.; Quick, S.; Elzanaty, N.; Mahlmann, A.; Ibrahim, K.; Ghazy, T. Effect of Peri-Interventional Blood Loss on In-Stent Thrombosis After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. J. Cardiovasc. Dev. Dis. 2025, 12, 67. https://doi.org/10.3390/jcdd12020067
Youssef A, Mashaly A, Alkomi U, Christoph M, Abdelsamad A, Quick S, Elzanaty N, Mahlmann A, Ibrahim K, Ghazy T. Effect of Peri-Interventional Blood Loss on In-Stent Thrombosis After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. Journal of Cardiovascular Development and Disease. 2025; 12(2):67. https://doi.org/10.3390/jcdd12020067
Chicago/Turabian StyleYoussef, Akram, Ahmed Mashaly, Usama Alkomi, Marian Christoph, Ahmed Abdelsamad, Silvio Quick, Nesma Elzanaty, Adrian Mahlmann, Karim Ibrahim, and Tamer Ghazy. 2025. "Effect of Peri-Interventional Blood Loss on In-Stent Thrombosis After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction" Journal of Cardiovascular Development and Disease 12, no. 2: 67. https://doi.org/10.3390/jcdd12020067
APA StyleYoussef, A., Mashaly, A., Alkomi, U., Christoph, M., Abdelsamad, A., Quick, S., Elzanaty, N., Mahlmann, A., Ibrahim, K., & Ghazy, T. (2025). Effect of Peri-Interventional Blood Loss on In-Stent Thrombosis After Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. Journal of Cardiovascular Development and Disease, 12(2), 67. https://doi.org/10.3390/jcdd12020067