Predictive Threshold Value of the Breathing Reserve for the Decline in Cardiorespiratory Fitness Among the Healthy Middle-Aged Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria of the Participants
2.3. General Data Collection and Physical Examination
2.4. Cardiopulmonary Exercise Testing
2.5. Statistical Methods
3. Results
3.1. Characteristics of the Study Subjects
3.2. Relationship Between the Physical Examination, Biochemical Indicators, Respiratory Function, and Decline in CRF
4. Discussion
4.1. Potential Role of BR% in a Decline in CRF
4.2. Gender-Specific Influencing Factors of BR%
4.3. Reasons for Gender-Specific BR% Cut-Off Values
4.4. Respiratory Training
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines Approved by the Guidelines Review Committee. In Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Rosenblat, M.A.; Granata, C.; Thomas, S.G. Effect of Interval Training on the Factors Influencing Maximal Oxygen Consumption: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 1329–1352. [Google Scholar] [CrossRef] [PubMed]
- Genberg, M.; Andren, B.; Lind, L.; Hedenstrom, H.; Malinovschi, A. Commonly used reference values underestimate oxygen uptake in healthy, 50-year-old Swedish women. Clin. Physiol. Funct. Imaging 2018, 38, 25–33. [Google Scholar] [CrossRef] [PubMed]
- American Thoracic, S.; American College of Chest, P. ATS/ACCP Statement on cardiopulmonary exercise testing. Am. J. Respir. Crit. Care Med. 2003, 167, 211–277. [Google Scholar] [CrossRef]
- Toma, N.; Bicescu, G.; Enache, R.; Dragoi, R.; Cinteza, M. Cardiopulmonary exercise testing in differential diagnosis of dyspnea. Maedica 2010, 5, 214–218. [Google Scholar] [PubMed]
- Sperandio, E.F.; Arantes, R.L.; Matheus, A.C.; Silva, R.P.; Lauria, V.T.; Romiti, M.; Gagliardi, A.R.; Dourado, V.Z. Restrictive pattern on spirometry: Association with cardiovascular risk and level of physical activity in asymptomatic adults. J. Bras. Pneumol. 2016, 42, 22–28. [Google Scholar] [CrossRef]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work Environ. Health 1990, 16 (Suppl. S1), 55–58. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Burtscher, M. Survival of the fittest: VO(2)max, a key predictor of longevity? Front. Biosci. (Landmark Ed.) 2018, 23, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.D.; Weisman, I.M.; Zeballos, R.J.; Beck, K.C. Emerging concepts in the evaluation of ventilatory limitation during exercise: The exercise tidal flow-volume loop. Chest 1999, 116, 488–503. [Google Scholar] [CrossRef] [PubMed]
- Guazzi, M.; Adams, V.; Conraads, V.; Halle, M.; Mezzani, A.; Vanhees, L.; Arena, R.; Fletcher, G.F.; Forman, D.E.; Kitzman, D.W.; et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 2012, 126, 2261–2274. [Google Scholar] [CrossRef]
- Opina, M.T.D.; Brinkley, T.E.; Gordon, M.; Lyles, M.F.; Nicklas, B.J. Association of Breathing Reserve at Peak Exercise With Body Composition and Physical Function in Older Adults With Obesity. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1973–1979. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; McKenzie, D.C.; Haverkamp, H.C.; Eldridge, M.W. Update in the understanding of respiratory limitations to exercise performance in fit, active adults. Chest 2008, 134, 613–622. [Google Scholar] [CrossRef]
- Molgat-Seon, Y.; Dominelli, P.B.; Ramsook, A.H.; Schaeffer, M.R.; Molgat Sereacki, S.; Foster, G.E.; Romer, L.M.; Road, J.D.; Guenette, J.A.; Sheel, A.W. The effects of age and sex on mechanical ventilatory constraint and dyspnea during exercise in healthy humans. J. Appl. Physiol. 2018, 124, 1092–1106. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Ripoll, J.G.; Cross, T.J.; Baker, S.E.; Wiggins, C.C.; Welch, B.T.; Joyner, M.J. Sex differences in large conducting airway anatomy. J. Appl. Physiol. 2018, 125, 960–965. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Molgat-Seon, Y.; Bingham, D.; Swartz, P.M.; Road, J.D.; Foster, G.E.; Sheel, A.W. Dysanapsis and the resistive work of breathing during exercise in healthy men and women. J. Appl. Physiol. 2015, 119, 1105–1113. [Google Scholar] [CrossRef] [PubMed]
- Mann, L.M.; Granger, E.A.; Chan, J.S.; Yu, A.; Molgat-Seon, Y.; Dominelli, P.B. Minimizing airflow turbulence in women lowers the work of breathing to levels similar to men. J. Appl. Physiol. 2020, 129, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, P.B.; Render, J.N.; Molgat-Seon, Y.; Foster, G.E.; Romer, L.M.; Sheel, A.W. Oxygen cost of exercise hyperpnoea is greater in women compared with men. J. Physiol. 2015, 593, 1965–1979. [Google Scholar] [CrossRef]
- Cory, J.M.; Schaeffer, M.R.; Wilkie, S.S.; Ramsook, A.H.; Puyat, J.H.; Arbour, B.; Basran, R.; Lam, M.; Les, C.; MacDonald, B.; et al. Sex differences in the intensity and qualitative dimensions of exertional dyspnea in physically active young adults. J. Appl. Physiol. 2015, 119, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Neder, J.A.; Dal Corso, S.; Malaguti, C.; Reis, S.; De Fuccio, M.B.; Schmidt, H.; Fuld, J.P.; Nery, L.E. The pattern and timing of breathing during incremental exercise: A normative study. Eur. Respir. J. 2003, 21, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, D.; Torres-Tamayo, N.; Torres-Sanchez, I.; Garcia-Rio, F.; Bastir, M. Morphological and functional implications of sexual dimorphism in the human skeletal thorax. Am. J. Phys. Anthropol. 2016, 161, 467–477. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Archiza, B.; Ramsook, A.H.; Mitchell, R.A.; Peters, C.M.; Molgat-Seon, Y.; Henderson, W.R.; Koehle, M.S.; Boushel, R.; Sheel, A.W. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp. Physiol. 2017, 102, 1535–1547. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, P.B.; Molgat-Seon, Y.; Sheel, A.W. Sex Differences in the Pulmonary System Influence the Integrative Response to Exercise. Exerc. Sport Sci. Rev. 2019, 47, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, J.A.; Romer, L.; Rodman, J.; Miller, J.; Smith, C. Consequences of exercise-induced respiratory muscle work. Respir. Physiol. Neurobiol. 2006, 151, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Geary, C.M.; Welch, J.F.; McDonald, M.R.; Peters, C.M.; Leahy, M.G.; Reinhard, P.A.; Sheel, A.W. Diaphragm fatigue and inspiratory muscle metaboreflex in men and women matched for absolute diaphragmatic work during pressure-threshold loading. J. Physiol. 2019, 597, 4797–4808. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.F.; Archiza, B.; Guenette, J.A.; West, C.R.; Sheel, A.W. Sex differences in diaphragmatic fatigue: The cardiovascular response to inspiratory resistance. J. Physiol. 2018, 596, 4017–4032. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Smith, J.R.; Goto, K.; Shimizu, K.; Saito, M.; Ishida, K.; Koike, T.; Iwase, S.; Harms, C.A. Elevated sympathetic vasomotor outflow in response to increased inspiratory muscle activity during exercise is less in young women compared with men. Exp. Physiol. 2018, 103, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Broxterman, R.M.; Hammer, S.M.; Alexander, A.M.; Didier, K.D.; Kurti, S.P.; Barstow, T.J.; Harms, C.A. Sex differences in the cardiovascular consequences of the inspiratory muscle metaboreflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R574–R581. [Google Scholar] [CrossRef]
- Joyner, M.J.; Barnes, J.N.; Hart, E.C.; Wallin, B.G.; Charkoudian, N. Neural control of the circulation: How sex and age differences interact in humans. Compr. Physiol. 2015, 5, 193–215. [Google Scholar] [CrossRef]
- Dominelli, P.B.; Molgat-Seon, Y.; Griesdale, D.E.G.; Peters, C.M.; Blouin, J.S.; Sekhon, M.; Dominelli, G.S.; Henderson, W.R.; Foster, G.E.; Romer, L.M.; et al. Exercise-induced quadriceps muscle fatigue in men and women: Effects of arterial oxygen content and respiratory muscle work. J. Physiol. 2017, 595, 5227–5244. [Google Scholar] [CrossRef]
- Amann, M. Pulmonary system limitations to endurance exercise performance in humans. Exp. Physiol. 2012, 97, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Souza, H.; Rocha, T.; Pessoa, M.; Rattes, C.; Brandao, D.; Fregonezi, G.; Campos, S.; Aliverti, A.; Dornelas, A. Effects of inspiratory muscle training in elderly women on respiratory muscle strength, diaphragm thickness and mobility. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Illi, S.K.; Held, U.; Frank, I.; Spengler, C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and meta-analysis. Sports Med. 2012, 42, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Segizbaeva, M.O.; Aleksandrova, N.P. Respiratory Muscle Strength and Ventilatory Function Outcome: Differences Between Trained Athletes and Healthy Untrained Persons. Adv. Exp. Med. Biol. 2021, 1289, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Ublosakka-Jones, C.; Tongdee, P.; Pachirat, O.; Jones, D.A. Slow loaded breathing training improves blood pressure, lung capacity and arm exercise endurance for older people with treated and stable isolated systolic hypertension. Exp. Gerontol. 2018, 108, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Stickland, M.K.; Butcher, S.J.; Marciniuk, D.D.; Bhutani, M. Assessing exercise limitation using cardiopulmonary exercise testing. Pulm. Med. 2012, 2012, 824091. [Google Scholar] [CrossRef] [PubMed]
Male (n = 193) | Female (n = 128) | Total | ||
---|---|---|---|---|
Demographic information | Age (years) | 49.0 (43.0~55.8) | 49.0 (44.0~52.0) | 48.8 ± 5.7 |
BMI (kg/m2) | 25.2 ± 2.8 | 22.8 ± 2.4 | 24.3 ± 2.9 | |
Grip strength (kg) | 38.6 (33.8, 43.3) | 24.7 (21.8, 28.0) | 33.2 ± 9.4 | |
SBP (mmHg) | 122.5 ± 14.0 | 115.7 ± 14.9 | 119.8 ± 14.7 | |
DBP (mmHg) | 79.1 ± 9.3 | 73.0 ± 11.0 | 76.7 ± 10.4 | |
HR (Bpm) | 82.8 ± 11.6 | 80.7 ± 10.5 | 81.9 ± 11.2 | |
Comorbidity | Hypertension [N (%)] | 34 (17.9) | 4 (3.2) | 38 (12.1) |
Diabetes [N (%)] | 6 (3.2) | 1 (0.8) | 7 (2.2) | |
Hyperlipidemia [N (%)] | 8 (4.2) | 4 (3.2) | 12 (3.8) | |
Biochemical indexes | Glu (mmol/L) | 5.2 (4.9, 5.6) | 5.0 (4.8, 5.2) | 5.2 ± 0.6 |
TC (mmol/L) | 5.0 ± 0.9 | 5.1 ± 0.9 | 5.0 ± 0.9 | |
LDL-C (mmol/L) | 3.0 ± 0.7 | 3.0 ± 0.7 | 3.0 ± 0.7 | |
TG (mmol/L) | 1.6 ± 0.9 | 1.1 ± 0.5 | 1.4 ± 0.8 | |
HDL-C (mmol/L) | 1.2 ± 0.2 | 1.4 ± 0.3 | 1.3 ± 0.3 | |
Hb (g/L) | 156.5 ± 9.7 | 133.1 ± 9.6 | 147.2 ± 15.0 | |
hs-CRP (mg/L) | 1.3 ± 2.1 | 1.2 ± 2.8 | 1.2 ± 2.4 | |
Liver function | ALT (U/L) | 23.0 (17.0, 32.0) | 14.0 (11.0, 20.0) | 23.6 ± 17.5 |
AST (U/L) | 24.0 ± 8.0 | 20.5 ± 6.2 | 22.6 ± 7.6 | |
Renal function | eGFR [mL/min/1.73 m2] | 88.2 ± 9.8 | 89.9 ± 11.3 | 88.9 ± 10.4 |
Creatinine (μmol/L) | 89.0 ± 8.9 | 69.7 ± 7.9 | 81.3 ± 12.8 | |
Uric acid (μmol/L) | 376.5 (322.0, 432.8) | 270.0 (228.3, 313.0) | 340.0 ± 91.3 | |
Hcy (μmol/L) | 13.4 (11.6, 16.3) | 9.9 (8.6, 11.4) | 13.5 ± 6.8 | |
Respiratory function | BR% | 51.2 ± 10.8 | 51.7 ± 9.4 | 51.4 ± 10.1 |
FEV1%pred | 94.2 ± 11.7 | 96.3 ± 10.3 | 95.0 ± 11.2 | |
FEV1/FVC (%) | 79.6 (78.8, 80.4) | 81.2 (80.7, 82.0) | 80.3 ± 1.2 | |
Borg score | 16.9 ± 1.0 | 16.7 ± 1.0 | 16.8 ± 1.0 | |
RER | 1.2 ± 0.1 | 1.2 ± 0.1 | 1.2 ± 0.01 | |
Cardiopulmonary parameters | VO2peak (mL/kg/min) | 24.8 (21.9, 28.3) | 20.4 (17.6, 23.3) | 23.3 ± 5.1 |
VO2peak (L/min) | 1.8 (1.6, 2.1) | 1.2 (1.0, 1.4) | 1.6 ± 0.4 | |
VO2%pred (%) | 77.3 ± 13.3 | 80.4 ± 14.8 | 78.5 ± 14.0 | |
VO2@AT (mL/min/kg) | 15.6 ± 3.7 | 13.4 ± 3.0 | 14.7 ± 3.6 | |
VE/VCO2@AT | 27.1 ± 3.1 | 27.8 ± 2.8 | 27.4 ± 3.0 | |
Heart rate reserve | 11.0 ± 9.1 | 12.2 ± 8.5 | 11.8 ± 8.8 | |
PETCO2@VO2peak (mmHg) | 41.5 ± 5.0 | 39.7 ± 4.1 | 40.8 ± 4.7 |
Male (n = 193) | Female (n = 128) | ||||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
Demographic information | Age (years) | 1.005 | 0.956–1.056 | 0.855 | 0.917 | 0.844–0.996 | 0.040 |
BMI (Kg/m2) | 0.978 | 0.875–1.092 | 0.689 | 0.958 | 0.826–1.110 | 0.569 | |
Grip strength (Kg) | 0.969 | 0.928–1.011 | 0.148 | 0.931 | 0.860–1.008 | 0.077 | |
SBP (mmHg) | 0.987 | 0.966–1.01 | 0.263 | 0.992 | 0.969–1.016 | 0.510 | |
DBP (mmHg) | 1.002 | 0.968–1.036 | 0.923 | 0.976 | 0.945–1.009 | 0.153 | |
HR (Bpm) | 1.041 | 1.01–1.072 | 0.008 | 0.999 | 0.965–1.033 | 0.941 | |
Biochemical indices | Glu (mmol/L) | 1.084 | 0.669–1.755 | 0.743 | 0.399 | 0.161–0.988 | 0.047 |
TC (mmol/L) | 1.317 | 0.925–1.876 | 0.126 | 1.027 | 0.696–1.515 | 0.894 | |
LDL-C (mmol/L) | 1.294 | 0.839–1.997 | 0.244 | 0.916 | 0.564–1.488 | 0.723 | |
TG (mmol/L) | 1.245 | 0.844–1.835 | 0.269 | 0.671 | 0.336–1.340 | 0.258 | |
HDL-C (mmol/L) | 1.433 | 0.46–4.465 | 0.535 | 2.223 | 0.708–6.978 | 0.171 | |
Hb (g/L) | 1.004 | 0.972–1.038 | 0.795 | 0.955 | 0.917–0.995 | 0.028 | |
hs-CRP (mg/L) | 1.068 | 0.893–1.277 | 0.47 | 1.022 | 0.889–1.175 | 0.758 | |
Liver function | ALT (U/L) | 1.029 | 1.001–1.057 | 0.045 | 1.013 | 0.976–1.052 | 0.488 |
AST (U/L) | 1.038 | 0.987–1.091 | 0.148 | 1.012 | 0.954–1.073 | 0.699 | |
Renal function | eGFR [mL/min/1.73 m2] | 0.983 | 0.951–1.016 | 0.302 | 1.027 | 0.994–1.060 | 0.110 |
Creatinine (μmol/L) | 1.019 | 0.983–1.056 | 0.296 | 0.970 | 0.927–1.016 | 0.195 | |
Uric acid (μmol/L) | 0.998 | 0.994–1.002 | 0.343 | 0.997 | 0.991–1.003 | 0.336 | |
Hcy (μmol/L) | 0.964 | 0.926–1.004 | 0.075 | 0.975 | 0.892–1.066 | 0.585 | |
Respiratory function | FEV1%pred | 0.975 | 0.949–1.002 | 0.071 | 0.970 | 0.936–1.006 | 0.097 |
FEV1/FVC (%) | 0.966 | 0.678–1.378 | 0.85 | 1.722 | 1.027–2.888 | 0.039 | |
BR% | 1.111 | 1.068–1.155 | <0.001 | 1.077 | 1.032–1.123 | 0.001 | |
Borg score | 0.776 | 0.549–1.096 | 0.150 | 0.645 | 0.408–1.022 | 0.062 | |
RER | 0.612 | 0.415–1.854 | 0.827 | 0.634 | 0.463–1.893 | 0.483 | |
Cardiopulmonary parameters | VO2@AT (mL/min/Kg) | 0.866 | 0.776–0.966 | 0.010 | 0.824 | 0.689–0.985 | 0.034 |
VE/VCO2@AT | 1.113 | 0.941–1.317 | 0.210 | 0.960 | 0.777–1.186 | 0.707 | |
Heart rate reserve | 1.022 | 0.983–1.064 | 0.276 | 1.047 | 0.992–1.106 | 0.098 | |
PETCO2@VO2peak (mmHg) | 1.198 | 1.083–1.326 | <0.001 | 1.087 | 0.947–1.247 | 0.237 | |
Multivariable | BR% | 1.111 | 1.068–1.156 | <0.001 | 1.086 | 1.038–1.137 | <0.001 |
analysis | Age, years | - | - | - | 0.895 | 0.817–0.981 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Wang, Y.; Li, J.; Xu, S.; Wang, P.; Zhao, W. Predictive Threshold Value of the Breathing Reserve for the Decline in Cardiorespiratory Fitness Among the Healthy Middle-Aged Population. J. Cardiovasc. Dev. Dis. 2025, 12, 85. https://doi.org/10.3390/jcdd12030085
Shen T, Wang Y, Li J, Xu S, Wang P, Zhao W. Predictive Threshold Value of the Breathing Reserve for the Decline in Cardiorespiratory Fitness Among the Healthy Middle-Aged Population. Journal of Cardiovascular Development and Disease. 2025; 12(3):85. https://doi.org/10.3390/jcdd12030085
Chicago/Turabian StyleShen, Tao, Yang Wang, Jinglin Li, Shunlin Xu, Peng Wang, and Wei Zhao. 2025. "Predictive Threshold Value of the Breathing Reserve for the Decline in Cardiorespiratory Fitness Among the Healthy Middle-Aged Population" Journal of Cardiovascular Development and Disease 12, no. 3: 85. https://doi.org/10.3390/jcdd12030085
APA StyleShen, T., Wang, Y., Li, J., Xu, S., Wang, P., & Zhao, W. (2025). Predictive Threshold Value of the Breathing Reserve for the Decline in Cardiorespiratory Fitness Among the Healthy Middle-Aged Population. Journal of Cardiovascular Development and Disease, 12(3), 85. https://doi.org/10.3390/jcdd12030085