Global Analysis of Nutritional Factors and Cardiovascular Risk: Insights from Worldwide Data and a Case Study in Mexican Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection
2.1.1. Inclusion and Exclusion Criteria
2.1.2. Data Analysis
2.1.3. ROC Curves
2.1.4. Ethical Considerations
2.1.5. Limitations and Assumptions
2.2. Study Design
2.3. Anthropometric and Body Composition Assessments
2.4. Linoleic Acid (LA) Determination
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vollset, S.E.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbastabar, H.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abdelkader, A.; et al. Burden of Disease Scenarios for 204 Countries and Territories, 2022–2050: A Forecasting Analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Diet and Health. Diet and Health: Implications for Reducing Chronic Disease Risk; National Academies Press: Washington, DC, USA, 1989; ISBN 978-0-309-03994-9. [Google Scholar]
- Ghosh, S.; Molcan, E.; DeCoffe, D.; Dai, C.; Gibson, D.L. Diets Rich in n -6 PUFA Induce Intestinal Microbial Dysbiosis in Aged Mice. Br. J. Nutr. 2013, 110, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Sears, C.; Ghosh, S. Excess Omega-6 Polyunsaturated Fatty Acid Intake Is Associated with Negative Cardiovascular, Intestinal and Metabolic Outcomes in Mice. Can. J. Diabetes 2016, 40, 278–279. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, S.; Hu, X.; Chen, F.; Li, D. A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients 2023, 15, 4898. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Abrignani, V.; Salvo, A.; Pacinella, G.; Tuttolomondo, A. The Mediterranean Diet, Its Microbiome Connections, and Cardiovascular Health: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 4942. [Google Scholar] [CrossRef]
- Kromhout, D. Food Consumption Patterns in the Seven Countries Study. Ann. Med. 1989, 21, 237–238. [Google Scholar] [CrossRef]
- Shetty, P. Nutrition Transition and Its Health Outcomes. Indian J. Pediatr. 2013, 80, 21–27. [Google Scholar] [CrossRef]
- Popkin, B.M.; Ng, S.W. The Nutrition Transition to a Stage of High Obesity and Noncommunicable Disease Prevalence Dominated by Ultra-processed Foods Is Not Inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Kenar, J.A.; Moser, B.R.; List, G.R. Naturally Occurring Fatty Acids. In Fatty Acids; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–82. [Google Scholar]
- Mercola, J.; D’Adamo, C.R. Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease. Nutrients 2023, 15, 3129. [Google Scholar] [CrossRef]
- Froyen, E.; Burns-Whitmore, B. The Effects of Linoleic Acid Consumption on Lipid Risk Markers for Cardiovascular Disease in Healthy Individuals: A Review of Human Intervention Trials. Nutrients 2020, 12, 2329. [Google Scholar] [CrossRef] [PubMed]
- Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A.L.; Cena, H.; Ghiselli, A.; La Vecchia, C.; Lercker, G.; Manzato, E.; Pirillo, A.; et al. Dietary Linoleic Acid and Human Health: Focus on Cardiovascular and Cardiometabolic Effects. Atherosclerosis 2020, 292, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Einerhand, A.W.C.; Mi, W.; Haandrikman, A.; Sheng, X.-Y.; Calder, P.C. The Impact of Linoleic Acid on Infant Health in the Absence or Presence of DHA in Infant Formulas. Nutrients 2023, 15, 2187. [Google Scholar] [CrossRef] [PubMed]
- Dávila-Torres, J.; González-Izquierdo, J.J.; Barrera-Cruz, A. Obesity in Mexico. Rev. Med. Inst. Mex. Seguro Soc. 2015, 53, 240–249. [Google Scholar]
- Shamah-Levy, T.; Cuevas-Nasu, L.; Gaona-Pineda, E.B.; Valenzuela-Bravo, D.G.; Méndez Gómez-Humarán, I.; Ávila-Arcos, M.A. Childhood Obesity in Mexico: Influencing Factors and Prevention Strategies. Front. Public Health 2022, 10, 949893. [Google Scholar] [CrossRef]
- Khandelwal, S.; Kelly, L.; Malik, R.; Prabhakaran, D.; Reddy, S. Impact of Omega-6 Fatty Acids on Cardiovascular Outcomes: A Review. J. Prev. Cardiol. 2013, 2, 325–336. [Google Scholar]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Jang, H.; Park, K. Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Clin. Nutr. 2020, 39, 765–773. [Google Scholar] [CrossRef]
- Al-Shaer, A.E.; Buddenbaum, N.; Shaikh, S.R. Polyunsaturated Fatty Acids, Specialized pro-Resolving Mediators, and Targeting Inflammation Resolution in the Age of Precision Nutrition. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2021, 1866, 158936. [Google Scholar] [CrossRef]
- Gonzalez-Becerra, K.; Barron-Cabrera, E.; Muñoz-Valle, J.F.; Torres-Castillo, N.; Rivera-Valdes, J.J.; Rodriguez-Echevarria, R.; Martinez-Lopez, E. A Balanced Dietary Ratio of N-6:N-3 Polyunsaturated Fatty Acids Exerts an Effect on Total Fatty Acid Profile in RBCs and Inflammatory Markers in Subjects with Obesity. Healthcare 2023, 11, 2333. [Google Scholar] [CrossRef]
- Bishehkolaei, M.; Pathak, Y. Influence of Omega N-6/n-3 Ratio on Cardiovascular Disease and Nutritional Interventions. Hum. Nutr. Metab. 2024, 37, 200275. [Google Scholar] [CrossRef]
- Maki, K.C.; Eren, F.; Cassens, M.E.; Dicklin, M.R.; Davidson, M.H. ω-6 Polyunsaturated Fatty Acids and Cardiometabolic Health: Current Evidence, Controversies, and Research Gaps. Adv. Nutr. 2018, 9, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Czernichow, S.; Thomas, D.; Bruckert, E. N-6 Fatty Acids and Cardiovascular Health: A Review of the Evidence for Dietary Intake Recommendations. Br. J. Nutr. 2010, 104, 788–796. [Google Scholar] [CrossRef]
- Poli, A.; Agostoni, C.; Visioli, F. Dietary Fatty Acids and Inflammation: Focus on the n-6 Series. Int. J. Mol. Sci. 2023, 24, 4567. [Google Scholar] [CrossRef] [PubMed]
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and Adolescent Obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Del Río-Navarro, B.E.; Velázquez-Monroy, O.; Sánchez-Castillo, C.P.; Lara-Esqueda, A.; Berber, A.; Fanghänel, G.; Violante, R.; Tapia-Conyer, R.; James, W.P.T. The High Prevalence of Overweight and Obesity in Mexican Children. Obes. Res. 2004, 12, 215–223. [Google Scholar] [CrossRef]
- Arellano-Alvarez, P.; Muñoz-Guerrero, B.; Ruiz-Barranco, A.; Garibay-Nieto, N.; Hernandez-Lopez, A.M.; Aguilar-Cuarto, K.; Pedraza-Escudero, K.; Fuentes-Corona, Z.; Villanueva-Ortega, E. Barriers in the Management of Obesity in Mexican Children and Adolescents through the COVID-19 Lockdown—Lessons Learned and Perspectives for the Future. Nutrients 2023, 15, 4238. [Google Scholar] [CrossRef]
- Sanders, T.A.B. Omega-6 Fatty Acids and Cardiovascular Disease. Circulation 2019, 139, 2437–2439. [Google Scholar] [CrossRef]
- Savva, S.; Tornaritis, M.; Savva, M.; Kourides, Y.; Panagi, A.; Silikiotou, N.; Georgiou, C.; Kafatos, A. Waist Circumference and Waist-to-Height Ratio Are Better Predictors of Cardiovascular Disease Risk Factors in Children than Body Mass Index. Int. J. Obes. 2000, 24, 1453–1458. [Google Scholar] [CrossRef]
- Pérez-Romero, S.; Gascón-Cánovas, J.J.; Salmerón-Martínez, D.; Parra-Hidalgo, P.; Monteagudo-Piqueras, O. Características Sociodemográficas y Variabilidad Geográfica Relacionada Con La Satisfacción Del Paciente En Atención Primaria. Rev. De Calid. Asist. 2016, 31, 300–308. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Alcohol Consumption. Our World in Data. Oxford, UK. 2022. Available online: https://ourworldindata.org/alcohol-consumption (accessed on 20 July 2024).
- Food and Agriculture Organization of the United Nations FAOSTAT. Data. Available online: https://www.fao.org/faostat/en/#data (accessed on 7 October 2024).
- Institute for Health Metrics and Evaluation. Global Burden of Disease (GBD). Study Compare. Available online: https://vizhub.healthdata.org/gbd-compare/# (accessed on 7 October 2024).
- Farfán Gutiérrez, M.; Pérez-Salicrup, D.R.; Flamenco-Sandoval, A.; Nicasio-Arzeta, S.; Mas, J.-F.; Ramírez Ramírez, I. Modeling Anthropic Factors as Drivers of Wildfire Occurrence at the Monarch Butterfly Biosphere. Madera Bosques 2018, 24, e2431591. [Google Scholar] [CrossRef]
- Li, H.; Song, X.; Liang, Y.; Bai, X.; Liu-Huo, W.-S.; Tang, C.; Chen, W.; Zhao, L. Global, Regional, and National Burden of Disease Study of Atrial Fibrillation/Flutter, 1990–2019: Results from a Global Burden of Disease Study, 2019. BMC Public Health 2022, 22, 2015. [Google Scholar] [CrossRef]
- Hintermeier, M.; Gold, A.W.; Erdmann, S.; Perplies, C.; Bozorgmehr, K.; Biddle, L. From Research into Practice: Converting Epidemiological Data into Relevant Information for Planning of Regional Health Services for Refugees in Germany. Int. J. Environ. Res. Public Health 2022, 19, 8049. [Google Scholar] [CrossRef] [PubMed]
- Dudley, W.N.; Benuzillo, J.G.; Carrico, M.S. SPSS and SAS Programming for the Testing of Mediation Models. Nurs. Res. 2004, 53, 59–62. [Google Scholar] [CrossRef]
- Haynes, W. Benjamini–Hochberg Method. In Encyclopedia of Systems Biology; Springer: New York, NY, USA, 2013; p. 78. [Google Scholar]
- Hu, J.X.; Zhao, H.; Zhou, H.H. False Discovery Rate Control with Groups. J. Am. Stat. Assoc. 2010, 105, 1215–1227. [Google Scholar] [CrossRef]
- Polo, T.C.F.; Miot, H.A. Aplicações Da Curva ROC Em Estudos Clínicos e Experimentais. J. Vasc. Bras. 2020, 19, e20200186. [Google Scholar] [CrossRef] [PubMed]
- Safari, S.; Baratloo, A.; Elfil, M.; Negida, A. Evidence Based Emergency Medicine; Part 5 Receiver Operating Curve and Area under the Curve. Emergency 2016, 4, 111–113. [Google Scholar]
- Unal, I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput. Math. Methods Med. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Evans, H.J.; Gibson, N.A.; Bennett, J.; Chan, S.Y.; Gavlak, J.; Harman, K.; Ismail-Koch, H.; Kingshott, R.N.; Langley, R.; Morley, A.; et al. British Thoracic Society Guideline for Diagnosing and Monitoring Paediatric Sleep-Disordered Breathing. Thorax 2023, 78, s1–s27. [Google Scholar] [CrossRef]
- Stevens, G.A.; Alkema, L.; Black, R.E.; Boerma, J.T.; Collins, G.S.; Ezzati, M.; Grove, J.T.; Hogan, D.R.; Hogan, M.C.; Horton, R.; et al. Guidelines for Accurate and Transparent Health Estimates Reporting: The GATHER Statement. PLoS Med. 2016, 13, e1002056. [Google Scholar] [CrossRef]
- Flores, R.; Telles, E. Social Stratification in Mexico. Am. Sociol Rev. 2012, 77, 486–494. [Google Scholar] [CrossRef]
- Luquín-García, M.D.; Macedo Ruíz, E.C.; Rojas-Altamirano, O.; López-Hernández, C. Determination of the Representative Socioeconomic Level by BSA in the Mexican Republic. Rev. Perspect. Empres. 2018, 5, 83–100. [Google Scholar] [CrossRef]
- Nayeri, H.; Naderi, G.A.; Asgari, S.; Sadeghi, M.; Boshtam, M.; Mohamadzadeh, S.; Babaknejad, N. LDL Fatty Acids Composition as a Risk Biomarker of Cardiovascular Disease. Artery Res. 2017, 20, 1. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Eggers, L.F.; Schwudke, D. Liquid Extraction: Folch. In Encyclopedia of Lipidomics; Springer: Dordrecht, The Netherlands, 2016; pp. 1–6. [Google Scholar]
- Rosner, B. Fundamentals of Biostatistics, 7th ed.; Cengage Learning, Inc: Boston, MA, USA, 2010; Volume 1. [Google Scholar]
- ClinCalc.com. Statistics. Post-hoc Power Calculator Post-Hoc Power Calculator. Evaluate Statistical Power of an Existing Study. Available online: https://clincalc.com/stats/Power.aspx (accessed on 28 April 2023).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191. [Google Scholar] [CrossRef]
- Kurotani, K.; Karunapema, P.; Jayaratne, K.; Sato, M.; Hayashi, T.; Kajio, H.; Fukuda, S.; Hara, H.; Okazaki, O.; Jayatilleke, A.U.; et al. Circulating Odd-Chain Saturated Fatty Acids Were Associated with Arteriosclerosis among Patients with Diabetes, Dyslipidemia, or Hypertension in Sri Lanka but Not Japan. Nutr. Res. 2018, 50, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, H.; Kumar, S.A.; Iyer, A.; Waanders, J.; Ward, L.C.; Brown, L. Responses to Oleic, Linoleic and α-Linolenic Acids in High-Carbohydrate, High-Fat Diet-Induced Metabolic Syndrome in Rats. J. Nutr. Biochem. 2013, 24, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Jalilpiran, Y.; Karimi, E.; Aune, D.; Larijani, B.; Mozaffarian, D.; Willett, W.C.; Esmaillzadeh, A. Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Diabetes Care 2021, 44, 2173–2181. [Google Scholar] [CrossRef]
- Raatz, S.K.; Conrad, Z.; Jahns, L. Trends in Linoleic Acid Intake in the United States Adult Population: NHANES 1999–2014. Prostaglandins Leukot. Essent. Fat. Acids 2018, 133, 23–28. [Google Scholar] [CrossRef]
- Marklund, M.; Wu, J.H.Y.; Imamura, F.; Del Gobbo, L.C.; Fretts, A.; de Goede, J.; Shi, P.; Tintle, N.; Wennberg, M.; Aslibekyan, S.; et al. Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Circulation 2019, 139, 2422–2436. [Google Scholar] [CrossRef]
- Aceves-Martins, M.; López-Cruz, L.; García-Botello, M.; Gutierrez-Gómez, Y.Y.; Moreno-García, C.F. Interventions to Treat Obesity in Mexican Children and Adolescents: Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 544–560. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, B.; Gordon, S.F.; Martínez-Andrade, G.O.; González-Unzaga, M. Childhood Obesity in Mexico: A Critical Analysis of the Environmental Factors, Behaviours and Discourses Contributing to the Epidemic. Health Psychol. Open 2019, 6, 2055102919849406. [Google Scholar] [CrossRef] [PubMed]
- Mercado-Mercado, G. Childhood Obesity in Mexico: A Constant Struggle and Reflection for Its Prevention on the Influence of Family and Social Habits. Obes. Med. 2023, 44, 100521. [Google Scholar] [CrossRef]
- Díaz-Urbina, D.; Escartín-Pérez, R.E.; López-Alonso, V.E.; Mancilla-Díaz, J.M. Efectos de Una Dieta Con Alto Contenido de Grasas Sobre Patrones Conductuales Alimentarios. Acta Colomb. Psicol. 2018, 21, 95–115. [Google Scholar] [CrossRef]
- Fekete, K.; Györei, E.; Lohner, S.; Verduci, E.; Agostoni, C.; Decsi, T. Long-chain Polyunsaturated Fatty Acid Status in Obesity: A Systematic Review and Meta-analysis. Obes. Rev. 2015, 16, 488–497. [Google Scholar] [CrossRef] [PubMed]
- Balas-Nakash, M.; Villanueva-Quintana, A.; Tawil-Dayan, S.; Schiffman-Selechnik, E.; Suverza-Fernández, A.; Vadillo-Ortega, F.; Perichart-Perera, O. Studio Piloto Para La Identificación de Indicadores Antropométricos Asociados a Marcadores de Riesgo de Síndrome Metabólico En Escolares Mexicanos. Bol. Med. Hosp. Infant. Mex. 2008, 65, 100–109. [Google Scholar]
- Morandi, A.; Miraglia del Giudice, E.; Martino, F.; Martino, E.; Bozzola, M.; Maffeis, C. Anthropometric Indices Are Not Satisfactory Predictors of Metabolic Comorbidities in Obese Children and Adolescents. J. Pediatr. 2014, 165, 1178–1183.e2. [Google Scholar] [CrossRef]
- Mehta, S.K. Waist Circumference to Height Ratio and Left Ventricular Mass in Children and Adolescents. Cardiol. Young 2016, 26, 658–662. [Google Scholar] [CrossRef]
- Barbieri, A.; Bursi, F.; Mantovani, F.; Valenti, C.; Quaglia, M.; Berti, E.; Marino, M.; Modena, M.G. Prognostic Impact of Left Ventricular Mass Severity According to the Classification Proposed by the American Society of Echocardiography/European Association of Echocardiography. J. Am. Soc. Echocardiogr. 2011, 24, 1383–1391. [Google Scholar] [CrossRef]
- Maffeis, C.; Banzato, C.; Talamini, G. Waist-to-Height Ratio, a Useful Index to Identify High Metabolic Risk in Overweight Children. J. Pediatr. 2008, 152, 207–213.e2. [Google Scholar] [CrossRef]
- Moreira Andrés, M.N. ¿Qué Medida Antropométrica de Exceso de Peso Discrimina Mejor El Riesgo Cardiovascular? Med. Clin. 2010, 134, 396–398. [Google Scholar] [CrossRef] [PubMed]
- Adolph, T.E.; Tilg, H. Western Diets and Chronic Diseases. Nat. Med. 2024, 30, 2133–2147. [Google Scholar] [CrossRef] [PubMed]
- Smolińska, K.; Szopa, A.; Sobczyński, J.; Serefko, A.; Dobrowolski, P. Nutritional Quality Implications: Exploring the Impact of a Fatty Acid-Rich Diet on Central Nervous System Development. Nutrients 2024, 16, 1093. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P.; DiNicolantonio, J.J. The Importance of a Balanced ω-6 to ω-3 Ratio in the Prevention and Management of Obesity. Open Heart 2016, 3, e000385. [Google Scholar] [CrossRef]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty Acid Composition of Adipose Tissue and Blood in Humans and Its Use as a Biomarker of Dietary Intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef]
- Katan, M.B.; Deslypere, J.P.; van Birgelen, A.P.; Penders, M.; Zegwaard, M. Kinetics of the Incorporation of Dietary Fatty Acids into Serum Cholesteryl Esters, Erythrocyte Membranes, and Adipose Tissue: An 18-Month Controlled Study. J. Lipid Res. 1997, 38, 2012–2022. [Google Scholar] [CrossRef]
Variables | Description | Reference |
---|---|---|
Cardiovascular disease incidence | Number of new cases of cardiovascular diseases per 100 people, in both sexes, age-standardized percent (%). | Our World in Data [33] |
Political stability and absence of violence or food terrorism (index) | A situation where all people, at all times, have physical, social, and economic access to sufficient, safe, and nutritious food that meets their dietary needs and food preferences for an active and healthy life. | Food and Agriculture Organization of the United Nations (FAO) [34] |
Prevalence of undernourishment (%) (3-year average) | A proportion of the population is in a state of undernourishment. Undernourishment is defined as the condition of people whose food energy consumption is consistently below the minimum food energy requirements for leading a healthy life and engaging in light physical activity. | |
Percentage of children under 5 years stunted (modeled estimate) (%) | Proportion of children under 59 months whose height-for-age is below the median of the reference population adopted by the World Health Organization (WHO) by two or three standard deviations. | |
Percentage of children under 5 years overweight (modeled estimate) (%) | Proportion of children in this age group whose weight-for-height is above +2 standard deviations (SD) compared to the median of the child growth references established by the WHO. | |
Prevalence of low birth weight (%) | Weight below the median of the reference population adopted by the World Health Organization (WHO) by two standard deviations (moderate underweight) or below the median by three standard deviations (severe underweight). | |
Average fat supply (g/cap/day) (3-year average) | Amount of fat in food, in grams per day, available for each person of the total population during the reference period. Fat content is determined by applying appropriate food composition factors to the amounts of products. The supply per person is calculated by dividing the total fats by the total population sharing the food during the reference period. However, per-person values represent only the average supply available to the entire population and do not strictly indicate individual consumption. Real food consumption may be lower due to food loss and waste during storage, preparation, cooking, leftovers, or disposal. | Food and Agriculture Organization of the United Nations (FAO) [34] and IHME (the Institute for Health Metrics and Evaluation) and 2019 Global Burden of Disease (GBD) [35] |
Seafood, fat supply (g/person/day) | ||
Milk and dairy products, fat supply (g/person/day) | ||
Eggs and their products, fat supply (g/person/day) | ||
Sweets and sugars, fat supply (g/person/day) | ||
Fats and oils, energy supply (kcal/person/day) | Amount of fat in food, in grams per day, available for each person of the total population during the reference period. Fat content is determined by applying appropriate food composition factors to the amounts of products. The supply per person is calculated by dividing the total fats by the total population sharing the food during the reference period. However, per-person values represent only the average supply available to the entire population and do not strictly indicate individual consumption. Real food consumption may be lower due to food loss and waste during storage, preparation, cooking, leftovers, or disposal. | Food and Agriculture Organization of the United Nations (FAO) [34] |
Low seafood omega-3 fatty acid consumption | Defined as average daily consumption (in milligrams per day) of less than 470–660 milligrams of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). | Food and Agriculture Organization of the United Nations (FAO) [34] |
n-6 polyunsaturated fatty acid consumption * | Defined as average daily consumption (in % daily energy) of less than 9–10% total energy intake from omega-6, specifically linoleic acid, γ-linolenic acid, eicosadienoic acid, dihomo-γ-linolenic acid, and arachidonic acid. | Food and Agriculture Organization of the United Nations (FAO) [34] |
Diet in trans fatty acids | Exposure to a diet in trans fatty acids across all age groups in 2019 is presented as the rate of exposure per 100 individuals. Defined as intake greater than 0–1.1% daily energy of trans fat from all sources, mainly partially hydrogenated vegetable oils and ruminant products. | Food and Agriculture Organization of the United Nations (FAO) [34] |
Variable | AUC | 95%CI | p-Value | Cut Off Value | SEN% | SPEC% | PPV% | NPV% |
---|---|---|---|---|---|---|---|---|
Prevalence of low birth weight (%) | 0.606 | 0.512–0.700 | 0.0270 | 0.750 | 65.80 | 58.90 | 61.60 | 63.30 |
Polyunsaturated fatty acid consumption | 0.650 | 0.566–0.734 | <0.0001 | 0.650 | 86.70 | 43.20 | 61.00 | 76.00 |
Low seafood omega-3 fatty acid consumption | 0.676 | 0.591–0.760 | <0.0001 | 0.650 | 89.30 | 53.80 | 67.00 | 82.70 |
Diet in trans fatty acids | 0.462 | 0.365–0.559 | 0.4020 | 0.650 | 55.70 | 87.10 | 80.00 | 67.90 |
Prevalence of undernourishment (%) | 0.675 | 0.588–0.761 | <0.0001 | 0.650 | 87.50 | 57.30 | 68.60 | 81.10 |
Political stability and absence of violence or food terrorism (index) | 0.351 | 0.272–0.430 | 0.0021 | 0.650 | 62.50 | 84.00 | 78.60 | 70.50 |
Average fat supply (g/cap/day) (3-year average) | 0.409 | 0.320–0.497 | 0.0390 | 0.650 | 61.00 | 87.80 | 82.00 | 71.20 |
Median and Range | p-Value * | Healthy Weight + | Obesity + | p-Value * | ||
---|---|---|---|---|---|---|
Age (Months) | Girls (n = 29) | 106 (77–120) | 0.170 | 106 (68–117) | 109 (84–123) | 0.186 |
Boys (n = 38) | 107 (93–129) | 116 (92–129) | 106 (93–131) | 0.977 | ||
Total children (n = 67) | 106 (87–125) | 106 (73–125) | 106 (89–126) | 0.526 | ||
Height (m) | Girls | 1.33 (1.24–1.45) | 0.429 | 1.31 (1.12–1.38) | 1.42 (1.32–1.48) | 0.026 |
Boys | 1.39 (1.24–1.45) | 1.34 (1.24–1.44) | 1.43 (1.32–1.46) | 0.096 | ||
Total children | 1.36 (125–1.45) | 1.32 (1.17–1.39) | 1.43 (1.32–1.46) | <0.0001 | ||
Weight (kg) | Girls | 35.8 (25.6–49.2) | 0.305 | 27.9 (18.5–31.6) | 49.2 (38.5–67.3) | <0.0001 |
Boys | 38.5 (29.3–58.3) | 29.4 (23.3–36.7) | 53.9 (40.1–60.3) | <0.0001 | ||
Total children | 36.9 (28.4–52.7) | 28.8 (21.8–35.6) | 50 (39.5–61.2) | <0.0001 | ||
WC (cm) | Girls | 66.5 (55–83) | 0.127 | 55 (53–63) | 83 (74–90) | <0.0001 |
Boys | 72.0 (60–89) | 61 (57–70) | 89 (75–92) | <0.0001 | ||
Total children | 71 (59–86) | 59.7 (54.7–66.5) | 86 (75–92) | <0.0001 | ||
BMI (kg/m2) | Girls | 18.6 (15.5–24.8) | 0.250 | 15.5 (15.0–17.3) | 24.8 (22.3–29.7) | <0.0001 |
Boys | 21.0 (16.5–27.1) | 16.6 (16.0–18.7) | 27.1 (23.6–29.0) | <0.0001 | ||
Total children | 19.4 (16.2–24.9) | 16.2 (15.3–17.7) | 24.9 (23.4–29.1) | <0.0001 | ||
WHR | Girls | 0.50 (0.44–0.58) | 0.135 | 0.44 (0.43–0.48) | 0.58 (0.54–0.59) | <0.0001 |
Boys | 0.52 (0.47–0.62) | 0.47 (0.45–0.48) | 0.62 (0.57–0.63) | <0.0001 | ||
Total children | 0.50 (0.46–0.59) | 0.46 (0.44–0.48) | 0.59 (0.56–0.63) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Meza, K.; Hernández-Fuentes, G.A.; Sánchez-Meza, E.; Delgado-Enciso, I.; Sánchez-Ramírez, C.A.; Muñiz-Valencia, R.; Guzmán-Esquivel, J.; Garza-Veloz, I.; Martinez-Fierro, M.L.; Rodriguez-Sanchez, I.P.; et al. Global Analysis of Nutritional Factors and Cardiovascular Risk: Insights from Worldwide Data and a Case Study in Mexican Children. J. Cardiovasc. Dev. Dis. 2025, 12, 115. https://doi.org/10.3390/jcdd12040115
Sánchez-Meza K, Hernández-Fuentes GA, Sánchez-Meza E, Delgado-Enciso I, Sánchez-Ramírez CA, Muñiz-Valencia R, Guzmán-Esquivel J, Garza-Veloz I, Martinez-Fierro ML, Rodriguez-Sanchez IP, et al. Global Analysis of Nutritional Factors and Cardiovascular Risk: Insights from Worldwide Data and a Case Study in Mexican Children. Journal of Cardiovascular Development and Disease. 2025; 12(4):115. https://doi.org/10.3390/jcdd12040115
Chicago/Turabian StyleSánchez-Meza, Karmina, Gustavo A. Hernández-Fuentes, Estibaliz Sánchez-Meza, Ivan Delgado-Enciso, Carmen A. Sánchez-Ramírez, Roberto Muñiz-Valencia, José Guzmán-Esquivel, Idalia Garza-Veloz, Margarita L. Martinez-Fierro, Iram P. Rodriguez-Sanchez, and et al. 2025. "Global Analysis of Nutritional Factors and Cardiovascular Risk: Insights from Worldwide Data and a Case Study in Mexican Children" Journal of Cardiovascular Development and Disease 12, no. 4: 115. https://doi.org/10.3390/jcdd12040115
APA StyleSánchez-Meza, K., Hernández-Fuentes, G. A., Sánchez-Meza, E., Delgado-Enciso, I., Sánchez-Ramírez, C. A., Muñiz-Valencia, R., Guzmán-Esquivel, J., Garza-Veloz, I., Martinez-Fierro, M. L., Rodriguez-Sanchez, I. P., Diaz-Martinez, J., Cerna-Cortés, J., Beas-Guzmán, O. F., & Ramírez-Flores, M. (2025). Global Analysis of Nutritional Factors and Cardiovascular Risk: Insights from Worldwide Data and a Case Study in Mexican Children. Journal of Cardiovascular Development and Disease, 12(4), 115. https://doi.org/10.3390/jcdd12040115