Non-Invasive Measurement of Hemodynamic Parameters via Whole-Body Impedance Cardiography Among Hospitalized Heart Failure Patients: An Effective Alternative to Invasive Right Heart Catheterization?
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparison of Non-Invasive and Invasive Measurements of Hemodynamic Parameters
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roger, V.L. Epidemiology of heart failure. Circ. Res. 2013, 113, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.R.; Roalfe, A.K.; Adoki, I.; Hobbs, F.D.R.; Taylor, C.J. Survival of patients with chronic heart failure in the community: A systematic review and meta-analysis. Eur. J. Heart Fail. 2019, 21, 1306–1325. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Fincke, R.; Hochman, J.S.; Lowe, A.M.; Menon, V.; Slater, J.N.; Webb, J.G.; LeJemtel, T.H.; Cotter, G. Cardiac power is the strongest hemodynamic correlate of mortality in cardiogenic shock: A report from the SHOCK trial registry. J. Am. Coll. Cardiol. 2004, 44, 340–348. [Google Scholar] [CrossRef]
- Paredes, O.L.; Shite, J.; Shinke, T.; Watanabe, S.; Otake, H.; Matsumoto, D.; Imuro, Y.; Ogasawara, D.; Sawada, T.; Yokoyama, M. Impedance cardiography for cardiac output estimation: Reliability of wrist-to-ankle electrode configuration. Circ. J. 2006, 70, 1164–1168. [Google Scholar] [CrossRef]
- Cotter, G.; Moshkovitz, Y.; Kaluski, E.; Cohen, A.J.; Miller, H.; Goor, D.; Vered, Z. Accurate, noninvasive continuous monitoring of cardiac output by whole-body electrical bioimpedance. Chest 2004, 125, 1431–1440. [Google Scholar] [CrossRef]
- Kööbi, T.; Kaukinen, S.; Turjanmaa, V.M.; Uusitalo, A.J. Whole-body impedance cardiography in the measurement of cardiac output. Crit. Care Med. 1997, 25, 779–785. [Google Scholar] [CrossRef]
- Kööbi, T.; Kaukinen, S.; Turjanmaa, V.M. Cardiac output can be reliably measured noninvasively after coronary artery bypass grafting operation. Crit. Care Med. 1999, 27, 2206–2211. [Google Scholar] [CrossRef]
- Guha, A.; Arora, D.; Mehta, Y. Comparative study of cardiac output measurement by regional impedance cardiography and thermodilution method in patients undergoing off pump coronary artery bypass graft surgery. Ann. Card. Anaesth. 2022, 25, 335–342. [Google Scholar] [CrossRef]
- Kaukinen, S.; Kööbi, T.; Bi, Y.; Turjanmaa, V.M.h. Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography. J. Cardiothorac. Vasc. Anesth. 2003, 17, 199–203. [Google Scholar] [CrossRef]
- Argueta, E.E.; Paniagua, D. Thermodilution Cardiac Output: A Concept Over 250 Years in the Making. Cardiol. Rev. 2019, 27, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, G.M.; Ciarka, A.; Biniecka, M.; Ceranowicz, P. Right Heart Catheterization-Background, Physiological Basics, and Clinical Implications. J. Clin. Med. 2019, 8, 1331. [Google Scholar] [CrossRef]
- Tamimi, O.; Mohammed, M.H.A. Pulmonary Vascular Resistance Measurement Remains Keystone in Congenital Heart Disease Management. Front. Cardiovasc. Med. 2021, 8, 607104. [Google Scholar] [CrossRef]
- Hill, L.K.; Sollers Iii, J.J.; Thayer, J.F. Resistance reconstructed estimation of total peripheral resistance from computa-tionally derived cardiac output. Biomed. Sci. Instrum. 2013, 49, 216–223. [Google Scholar]
- Chemla, D.; Castelain, V.; Humbert, M.; Hébert, J.-L.; Simonneau, G.; Lecarpentier, Y.; Hervé, P. New formula for pre-dicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 2004, 126, 1313–1317. [Google Scholar] [CrossRef]
- Chioncel, O.; Lainscak, M.; Seferovic, P.M.; Anker, S.D.; Crespo-Leiro, M.G.; Harjola, V.-P.; Parissis, J.; Laroche, C.; Piepoli, M.F.; Fonseca, C.; et al. Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: An analysis of the ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1574–1585. [Google Scholar] [CrossRef]
- Joseph, P.; Dokainish, H.; McCready, T.; Budaj, A.; Roy, A.; Ertl, G.; Gomez-Mesa, J.E.; Leong, D.; Ezekowitz, J.; Hage, C.; et al. A multinational registry to study the characteristics and outcomes of heart failure patients: The global congestive heart failure (G-CHF) registry. Am. Heart J. 2020, 227, 56–63. [Google Scholar] [CrossRef]
- Imhoff, M.; Lehner, J.H.; Löhlein, D. Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients. Crit. Care Med. 2000, 28, 2812–2818. [Google Scholar] [CrossRef]
- Kööbi, T.; Kaukinen, S.; Ahola, T.; Turjanmaa, V.M. Non-invasive measurement of cardiac output: Whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods. Intensive Care Med. 1997, 23, 1132–1137. [Google Scholar] [CrossRef]
- Bhavya, G.; Nagaraja, P.S.; Singh, N.G.; Ragavendran, S.; Sathish, N.; Manjunath, N.; Kumar, K.A.; Nayak, V.B. Com-parison of continuous cardiac output monitoring derived from regional impedance cardiography with continuous ther-modilution technique in cardiac surgical patients. Ann. Card. Anaesth. 2020, 23, 189–192. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Emoto, N.; Miyagawa, K.; Nakayama, K.; Kinutani, H.; Tanaka, H.; Shinke, T.; Hirata, K. Noninvasive and simple assessment of cardiac output and pulmonary vascular resistance with whole-body impedance cardiography is useful for monitoring patients with pulmonary hypertension. Circ. J. 2013, 77, 2383–2389. [Google Scholar] [CrossRef] [PubMed]
- Martelli, G.; Congedi, S.; Lorenzoni, G.; Nardelli, M.; Lucchetta, V.; Gregori, D.; Tiberio, I. Echocardiographic assessment of pulmonary capillary wedge pressure by E/e’ ratio: A systematic review and meta-analysis. J. Crit. Care 2023, 76, 154281. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall Cohort (n = 203) |
---|---|
Age (years) | 72 ± 13 |
Male sex | 65% (132) |
BMI (kg/m2) | 27 ± 5 |
Arterial hypertension | 83.3% (169) |
Coronary artery disease Prior myocardial infarction Prior PCI Prior CAB-OP Prior CAB-OP + Valve replacement/repair | 49.3% (100) 19.7% (40) 34.5% (70) 11.3% (23) 2% (4) |
Structural heart disease Dilated cardiomyopathy Ischemic cardiomyopathy Hypertrophic cardiomyopathy Hypertrophic-obstructive cardiomyopathy Myocarditis Cardiac amyloidosis Cardiac sarcoidosis Pericarditis constrictiva Tachymyopathy | 85.7% (174) 17.2% (35) 37.9% (77) 3.9% (8) 1% (2) 8.9% (18) 2% (4) 1% (2) 1% (2) 12.8% (26) |
HFpEF HFmrEF HFrEF | 53.7% (109) 12.3% (25) 34% (69) |
Atrial fibrillation Paroxysmal Persistent Permanent AF at time of baseline examination | 57.1% (116) 19.2% (39) 26.1% (53) 11.8% (24) 29.1% (59) |
Diabetes mellitus Oral antidiabetics Insulin | 23.2% (47) 16.3% (33) 6.9% (14) |
Current smoker Former smoker | 12.8% (26) 17.2% (35) |
Hyperlipoproteinemia | 57.1% (116) |
NYHA I NYHA II NYHA III NYHA IV | 13.8% (28) 42.4% (86) 40.4% (82) 3.4% (7) |
NTproBNP (pg/mL) * | 1271 ± 2192 |
GFR (mL/min) | 63 ± 27 |
Urea (mg/dL) | 50 ± 26 |
LDL-Cholesterol (mg/dL) | 94 ± 39 |
HDL-Cholesterol (mg/dL) | 57 ± 19 |
Heart failure medication | |
ACE/AT1-inhibitors | 65.5% (133) |
Beta Blockers | 82.8% (168) |
ARNI | 41.4% (84) |
MRA | 52.7% (107) |
SGLT-II-inhibitors | 69% (140) |
Diuretics | 75.9% (154) |
Variable | Overall Cohort (n = 203) |
---|---|
LVEDD (mm) | 52 ± 11 |
LVESD (mm) | 39 ± 12 |
Prior isolated surgical valve replacement/repair | 25.1% (51) |
Aortic valve regurgitation None Mild Moderate Severe | 60% (122) 28.6% (58) 11.3% (23) 0% (0) |
Aortic valve stenosis None Mild Moderate Severe | 88.7% (180) 5.4% (11) 5.9% (12) 0% (0) |
Mitral valve regurgitation None Mild Moderate Severe | 21.2% (43) 55.7% (113) 23.2% (47) 0% (0) |
Prior M-TEER | 12.3% (25) |
Tricuspid valve regurgitation None Mild Moderate Severe | 18.2% (37) 50.7% (103) 15.3% (31) 15.8% (32) |
Prior T-TEER Cardioband | 1.5% (3) 1% (2) |
Variable | Overall Cohort (n = 203) |
---|---|
Whole-body ICG | |
Heart rate (bpm) | 72 ± 14 |
Systolic arterial pressure (mmHg) Mean arterial pressure (mmHg) Diastolic arterial pressure (mmHg) | 131 ± 24 94 ± 15 76 ± 13 |
Stroke volume (mL) | 58 ± 16 |
Stroke volume index (mL/m2) | 30 ± 8 |
Cardiac output (L/min) | 4.1 ± 1.3 |
Cardiac index (L/min/m2) | 2.1 ± 0.6 |
Cardiac power index (W/m2) | 0.45 ± 0.15 |
Total peripheral resistance (dyn × s−1 × cm−5) | 2225 ± 3314 |
Total peripheral resistance index (dyn × s−1 × cm−5 × m−2) | 3795 ± 1273 |
Pulmonary vascular resistance (dyn × s−1 × cm−5) | 386 ± 218 |
Respiration rate (min−1) | 17 ± 4 |
Total body water (kg) Proportion of total body water to weight (%) | 44 ± 9 55 ± 10 |
Basal Impedance (Ω) | 358 ± 60 |
Right heart catheterization | |
Systolic pulmonary artery pressure (mmHg) Mean pulmonary artery pressure (mmHg) Diastolic pulmonary artery pressure (mmHg) | 38 ± 16 24 ± 11 14 ± 8 |
Systolic right ventricular pressure (mmHg) Diastolic right ventricular pressure (mmHg) | 38 ± 18 4 ± 4 |
Mean right atrial pressure (mmHg) * | 6 ± 5 |
Mean pulmonary capillary wedge pressure (mmHg) | 14 ± 8 |
Cardiac output (L/min) | 4 ± 1.2 |
Cardiac index (L/min/m2) | 2.1 ± 0.6 |
Total peripheral resistance (dyn × s−1 × cm−5) | 1733 ± 590 |
Pulmonary vascular resistance (dyn × s−1 × cm−5) | 220 ± 162 |
Pulmonal arterial saturation (%) | 65 ± 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausbuettel, F.; Khwamurad, S.; Abdo, M.H.; Kerber, S.; Nentwich, K.; Hautmann, M.; Barth, S. Non-Invasive Measurement of Hemodynamic Parameters via Whole-Body Impedance Cardiography Among Hospitalized Heart Failure Patients: An Effective Alternative to Invasive Right Heart Catheterization? J. Cardiovasc. Dev. Dis. 2025, 12, 128. https://doi.org/10.3390/jcdd12040128
Ausbuettel F, Khwamurad S, Abdo MH, Kerber S, Nentwich K, Hautmann M, Barth S. Non-Invasive Measurement of Hemodynamic Parameters via Whole-Body Impedance Cardiography Among Hospitalized Heart Failure Patients: An Effective Alternative to Invasive Right Heart Catheterization? Journal of Cardiovascular Development and Disease. 2025; 12(4):128. https://doi.org/10.3390/jcdd12040128
Chicago/Turabian StyleAusbuettel, Felix, Sabah Khwamurad, Murad Haj Abdo, Sebastian Kerber, Karin Nentwich, Martina Hautmann, and Sebastian Barth. 2025. "Non-Invasive Measurement of Hemodynamic Parameters via Whole-Body Impedance Cardiography Among Hospitalized Heart Failure Patients: An Effective Alternative to Invasive Right Heart Catheterization?" Journal of Cardiovascular Development and Disease 12, no. 4: 128. https://doi.org/10.3390/jcdd12040128
APA StyleAusbuettel, F., Khwamurad, S., Abdo, M. H., Kerber, S., Nentwich, K., Hautmann, M., & Barth, S. (2025). Non-Invasive Measurement of Hemodynamic Parameters via Whole-Body Impedance Cardiography Among Hospitalized Heart Failure Patients: An Effective Alternative to Invasive Right Heart Catheterization? Journal of Cardiovascular Development and Disease, 12(4), 128. https://doi.org/10.3390/jcdd12040128