Impact of the Pre-Operative Standardized Nutritional Protocol in Infants with Congenital Heart Disease (CHD)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Incidence of NEC
3.3. Nutrition and Growth
3.4. Achievement of Full Enteral Feeds
3.5. Length of NICU Stay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karpen, K. Nutrition in the Cardiac Newborns. Clin. Perinatol. 2016, 43, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Donnellan, A.; Justice, L. Preoperative stabilization of infants with HLHS before Stage I palliation. Crit. Care Nurse 2016, 36, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Floh, A.A.; Slicker, J.; Schwartz, S.M. Nutrition and Mesenteric Issues in Pediatric Cardiac critical care. Pediatr. Crit. Care Med. 2016, 17, S243–S249. [Google Scholar] [CrossRef] [PubMed]
- Slicker, J.; Hehir, D.A.; Horsley, M.; Monczka, J.; Stern, K.W.; Roman, B.; Ocampo, E.C.; Flanagan, L.; Keenan, E.; Lambert, L.M.; et al. Nutrition Algorithms for Infants with HLHS; birth through the first interstage period. Congenit. Heart Dis. 2013, 8, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.C.; Miron, I.C.; Mîndru, D.E.; Curpăn, A.Ș.; Stan, R.C.; Țarcă, E.; Luca, F.A.; Pădureț, A.I. Optimal Nutrition parameters for neonates and Infants with Congenital Heart disease. Nutrients 2022, 14, 1671. [Google Scholar] [CrossRef] [PubMed]
- Gephart, S.M.; Moore, E.F.; Fry, E. Standardized feeding protocols to reduce risk of NEC in fragile infants born premature or with CHD. CritCareNurse 2018, 30, 457–466. [Google Scholar]
- Martini, S.; Beghetti, I.; Annunziata, M.; Aceti, A.; Galletti, S.; Ragni, L.; Donti, A.; Corvaglia, L. Enteral Nutrition in term infants with congenital heart disease: Knowledge gaps and future directions to improve clinical practice. Nutrients 2021, 13, 932. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.T.; McMahon, C.J.; James, A. Necrotizing Enterocolitis in children with congenital heart disease: A literature review. Pediatr. Cardiol. 2021, 42, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Mangili, G.; Garzoli, E.; Sadou, Y. Feeding dysfunctions and failure to thrive in neonates with congenital heart diseases. Pediatr. Medica Chir. 2018, 40, 196. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.; Vohra, R.; Negi, M.; Joshi, R.; Aggarwal, N.; Aggarwal, M.; Joshi, R. Feasibility of initiating early enteral nutrition after CH surgery in neonates and infants. Clin. Nutr. ESPEN 2018, 25, 2405–4577. [Google Scholar] [CrossRef] [PubMed]
- Justice, L.; Buckley, J.R.; Floh, A.; Horsley, M.; Alten, J.; Anand, V.; Schwartz, S.M. Nutrition Considerations in the Pediatric Cardiac intensive care unit patient. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Jasani, B.; Patole, S. Standardized feeding regimen for reducing necrotizing enterocolitis in preterm infants: An updated systematic review. J. Perinatol. 2017, 37, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Tsintoni, A.; Dimitriou, G.; Karatza, A.A. Nutrition of neonates with congenital heart disease: Existing evidence, conflicts and concerns. J. Matern. Fetal Neonatal Med. 2020, 33, 2487–2492. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, S.; McAleer, D.M.; Ariagno, K.; Barrett, M.; Stenquist, N.; Duggan, C.P.; Mehta, N.M. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals. Pediatr. Crit. Care Med. 2014, 15, 583–589. [Google Scholar] [CrossRef] [PubMed]
(a) | |||||
Non-protocol | Protocol | ||||
Sample Size (n =) | 39 | 12 | |||
%Preterm | 43.6% | 41.7% | |||
Average GA (weeks) | 36.2 | 36.5 | |||
Average BW (g) | 2740 | 2770 | |||
HLHS, Critical Stenosis, Coarctation | n = 7 (17.9%) | n = 2 (16.7%) | |||
Non-cardiac congenital defects | 43.6% | 16.7% | |||
NEC incidence | 10% | 0% | |||
(b) | |||||
Non-Protocol | Protocol | ||||
Patient # | CHD | Comorbidities | Patient # | CHD | Comorbidities |
2 | TOF + PA | DiGeorge syndrome (22q11 deletion), moderate right hydronephrosis, vesicoureteric reflux | 706 | TOF, subvalvar stenosis, mod valvar stenosis, ASD, PDA | None |
30 | Complete AV canal | Trisomy 21, duodenum inversum without malrotation | 707 | CoA with aortic arch, PDA, VSD, ASD | None |
37 | hsPDA | None | 709 | TOF with PS, VSD, PDA, PFO | None |
47 | TOF with PA with MAPCAs | Butterfly verterbra (T6) | 712 | Small ASDs, VSDs | None |
51 | D-TGA, large VSD, CoA | None | 714 | TOF, DORV, VSD, PFO, PV stenosis | None |
58 | TOF | None | 738 | TOF | None |
67 | Moderate VSD | Congenital hypothyroidism, extreme prematurity (26 weeks) | 740 | CoA | Turner Syndrome, horseshoe kidney |
80 | TOF | None | 747 | TOF with severe PS | None |
85 | Dextrocardia, Complete AV defect unbalanced, subpulmonary stenosis, TAPVR | None | 749 | DORV with subaortic VSD | None |
91 | PS | None | 758 | DORV with TGA, large VSD, large ASD | None |
110 | CoA, large PDA | None | 759 | DORV with TGA, mod PV stenosis | None |
130 | L-TGA, PS | None | 800 | Large VSD | Trisomy 21, right hydronephrosis, BPD |
133 | DORV, large VSD/ASD | None | |||
136 | Shone’s: hypoplastic arch, VSD, ASD | None | |||
146 | TOF with mild PS | Monosomy 7 mosaicism, global development delay, encephalomalacia | |||
151 | TOF with severe PS | None | |||
164 | TOF without outflow obstruction | VACTERL, microtia of left ear, hearing loss in both ears, congenital nasal pyriform aperture stenosis, lobar holoprosencephaly, absent septum pellucidum, rib deformity, horseshoe kidney, pulmonary hypoplasia | |||
168 | Complete AV canal | Trisomy 21 | |||
169 | TOF, DORV, subaortic VSD, cortriatrum, mod RVOT | VACTERL, Esophageal atresia, spinal anomaly | |||
202 | Large VSD, bicuspid AV, hypoplastic arch | None | |||
210 | TOF with mod outflow obstruction | None | |||
211 | HLHS | Heterotaxy with visceral situs inversus | |||
216 | TOF | DiGeorge, inguinal hernia, immunodeficiency, t cell deficiency, tracheobroncomalacia | |||
228 | AV Canal defect | Trisomy 21, aphakia, suspect glaucoma | |||
233 | DORV, moderate pulm obstruction, right aortic arch | None | |||
244 | Large VSD, moderate ASD | VACTERL, penile torsion, retractile testes, imperforate anus, sacral dimple | |||
258 | TOF | None | |||
261 | TOF | Trisomy 21, umbilical hernia | |||
265 | Severe PV dysplasia/stenosis | None | |||
266 | Severe CoA, mod arch hypoplasia, bicuspid AV, VSDs | Intestinal malrotation, polysplenia | |||
640 | CoA, PFO, LSVC to CS, VSD, bicuspid AV | Pierre robin sequence, turner syndrome (Webbed neck), micrognathia, stenosis of external auditory canals | |||
643 | CoA, tiny VSDs | Intestinal malrotation | |||
645 | ASD, TAPVR | None | |||
668 | DORV, VSD, PS, ASD | None | |||
678 | Large ASD, PV stenosis | None | |||
682 | Large VSD, bicuspid AV | Trisomy 18, cerebellar hypoplasia | |||
692 | VSD, hsPDA | None | |||
697 | hsPDA | None | |||
730 | hsPDA | None |
Patient # | GA | BW | CHD | Congenital Anomalies |
---|---|---|---|---|
1 | 23w6d | 650 g | hsPDA | None |
2 | 37w1d | 3345 g | DORV, large VSD/ASD | None |
3 | 38w6d | 2630 g | TOF with mild PS | Monosomy 7 mosaicism, global developmental delay, encephalomalacia |
4 | 30w0d | 1270 g | TOF without outflow obstruction | VACTERL, microtia of left ear, hearing loss in both ears, congenital nasal pyriform aperature stenosis, lobar holoprosencephaly, absent septum pellucidum, rib deformity, horseshoe kidney, pulmonary hypoplasia |
Non-Protocol | Protocol | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sample Size | Median | 25% | 75% | Sample Size | Median | 25% | 75% | p Value | |
GV at discharge | 34 * | 7.3 | 2.9 | 12.55 | 9 * | 9.3 | 4.7 | 10.9 | 0.75 |
WAZ change at discharge | 39 | −0.75 | −1.16 | −0.36 | 12 | −0.62 | −1.15 | −0.05 | 0.52 |
LAZ change at discharge | 39 | −0.83 | −1.69 | −0.05 | 12 | −0.51 | −1.22 | −0.17 | 0.92 |
HAZ change at discharge | 39 | −0.76 | −1.64 | −0.25 | 12 | −0.61 | −1.1 | −0.04 | 0.93 |
DOL when regained Birthweight | 34 * | 8.0 | 7.0 | 11.0 | 9 * | 7.5 | 5.25 | 10.5 | 0.54 |
Length of stay | 39 | 23 | 14 | 47 | 12 | 17 | 11.5 | 23 | 0.13 |
Day of life when full feed reached | 31 + | 11 | 7 | 23 | 10 | 8.5 | 7.5 | 11.5 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zacharias, P.; Blinci, J.; Shenoy, R.; Lee, J.; Singh, Y. Impact of the Pre-Operative Standardized Nutritional Protocol in Infants with Congenital Heart Disease (CHD). J. Cardiovasc. Dev. Dis. 2025, 12, 166. https://doi.org/10.3390/jcdd12050166
Zacharias P, Blinci J, Shenoy R, Lee J, Singh Y. Impact of the Pre-Operative Standardized Nutritional Protocol in Infants with Congenital Heart Disease (CHD). Journal of Cardiovascular Development and Disease. 2025; 12(5):166. https://doi.org/10.3390/jcdd12050166
Chicago/Turabian StyleZacharias, Patrick, Jenna Blinci, Ruthie Shenoy, Jesse Lee, and Yogen Singh. 2025. "Impact of the Pre-Operative Standardized Nutritional Protocol in Infants with Congenital Heart Disease (CHD)" Journal of Cardiovascular Development and Disease 12, no. 5: 166. https://doi.org/10.3390/jcdd12050166
APA StyleZacharias, P., Blinci, J., Shenoy, R., Lee, J., & Singh, Y. (2025). Impact of the Pre-Operative Standardized Nutritional Protocol in Infants with Congenital Heart Disease (CHD). Journal of Cardiovascular Development and Disease, 12(5), 166. https://doi.org/10.3390/jcdd12050166