Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives
Abstract
1. Introduction
2. Physiology of the Atrioventricular Node
3. Pathophysiology of AV Node Dysfunction in HF
4. Clinical Implications of AV Node Dysfunction in HF
5. Therapeutic Strategies
5.1. Pharmacological Therapy
5.2. Device Therapy
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Fumarulo, I.; Stefanini, A.; Masarone, D.; Burzotta, F.; Cameli, M.; Aspromonte, N. Cardiac Replacement Therapy: Critical Issues and Future Perspectives of Heart Transplantation and Artificial Heart. Curr. Probl. Cardiol. 2025, 50, 102971. [Google Scholar] [CrossRef]
- Schwinger, R.H.G. Pathophysiology of Heart Failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef]
- Fumarulo, I.; Pasquini, A.; La Vecchia, G.; Pellizzeri, B.; Sten, A.; Garramone, B.; Vaccarella, M.; Ravenna, S.E.; Lombardo, A.; Burzotta, F.; et al. Evaluation of the Effects of the Sodium–Glucose Cotransporter 2 Inhibitors and Sacubitril/Valsartan Combined Therapy in Patients with HFrEF: An Echocardiographic Study. Int. J. Mol. Sci. 2025, 26, 5651. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidou, T.; Ghosh, J.M.; Clark, A.L. Outcomes Related to First-Degree Atrioventricular Block and Therapeutic Implications in Patients with Heart Failure. JACC Clin. Electrophysiol. 2016, 2, 181–192. [Google Scholar] [CrossRef]
- Schoeller, R.; Andresen, D.; Büttner, P.; Oezcelik, K.; Vey, G.; Schröder, R. First- or Second-Degree Atrioventricular Block as a Risk Factor in Idiopathic Dilated Cardiomyopathy. Am. J. Cardiol. 1993, 71, 720–726. [Google Scholar] [CrossRef]
- Zipes, D.P.; Libby, P.; Bonow, R.O.; Mann, D.L.; Tomaselli, G.F. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bakker, M.L.; Moorman, A.F.; Christoffels, V.M. The atrioventricular node: Origin, development, and genetic program. Trends Cardiovasc. Med. 2010, 20, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Verkerk, A.O.; Wilders, R.; Coronel, R.; Ravesloot, J.H.; Verheijck, E.E. Ionic Remodeling of Sinoatrial Node Cells by Heart Failure. Circulation 2003, 108, 760–766. [Google Scholar] [CrossRef]
- Yanni, J.; Tellez, J.O.; Mączewski, M.; Mackiewicz, U.; Beresewicz, A.; Billeter, R.; Dobrzynski, H.; Boyett, M.R. Changes in Ion Channel Gene Expression Underlying Heart Failure-Induced Sinoatrial Node Dysfunction. Circ. Heart Fail. 2011, 4, 496–508. [Google Scholar] [CrossRef]
- Wilson, C.; Zi, M.; Smith, M.; Hussain, M.; D’Souza, A.; Dobrzynski, H.; Boyett, M.R. Atrioventricular Node Dysfunction in Pressure Overload-Induced Heart Failure—Involvement of the Immune System and Transcriptomic Remodelling. Front. Pharmacol. 2023, 14, 1083910. [Google Scholar] [CrossRef] [PubMed]
- La Franca, E.; Manno, G.; Ajello, L.; Di Gesaro, G.; Minà, C.; Visconti, C.; Bellavia, D.; Falletta, C.; Romano, G.; Dell’ Oglio, S.; et al. Physiopathology and Diagnosis of Congestive Heart Failure: Consolidated Certainties and New Perspectives. Curr. Probl. Cardiol. 2021, 46, 100691. [Google Scholar] [CrossRef]
- Cheng, H.; Smith, G.L.; Orchard, C.H.; Hancox, J.C. Acidosis Inhibits Spontaneous Activity and Membrane Currents in Myocytes Isolated from the Rabbit Atrioventricular Node. J. Mol. Cell. Cardiol. 2009, 46, 75–85. [Google Scholar] [CrossRef]
- Cheng, S. Long-Term Outcomes in Individuals with Prolonged PR Interval or First-Degree Atrioventricular Block. JAMA 2009, 301, 2571. [Google Scholar] [CrossRef]
- Magnani, J.W.; Gorodeski, E.Z.; Johnson, V.M.; Sullivan, L.M.; Hamburg, N.M.; Benjamin, E.J.; Ellinor, P.T. P Wave Duration Is Associated with Cardiovascular and All-Cause Mortality Outcomes: The National Health and Nutrition Examination Survey. Heart Rhythm 2011, 8, 93–100. [Google Scholar] [CrossRef]
- Burt, V.L.; Harris, T. The Third National Health and Nutrition Examination Survey: Contributing Data on Aging and Health. The Gerontologist 1994, 3, 486–490. [Google Scholar] [CrossRef]
- Reunanen, A.; Aromaa, A.; Pyörälä, K.; Punsar, S.; Maatela, J.; Knekt, P. The Social Insurance Institution’s Coronary Heart Disease Study. Baseline Data and 5-Year Mortality Experience. Acta Med. Scand. Suppl. 1983, 673, 1–120. [Google Scholar]
- Aro, A.L.; Anttonen, O.; Kerola, T.; Junttila, M.J.; Tikkanen, J.T.; Rissanen, H.A.; Reunanen, A.; Huikuri, H.V. Prognostic Significance of Prolonged PR Interval in the General Population. Eur. Heart J. 2014, 35, 123–129. [Google Scholar] [CrossRef]
- Magnani, J.W.; Wang, N.; Nelson, K.P.; Connelly, S.; Deo, R.; Rodondi, N.; Schelbert, E.B.; Garcia, M.E.; Phillips, C.L.; Shlipak, M.G.; et al. Electrocardiographic PR Interval and Adverse Outcomes in Older Adults: The Health, Aging, and Body Composition Study. Circ. Arrhythm. Electrophysiol. 2013, 6, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Prystowsky, E.N. The Effects of Slow Channel Blockers and Beta Blockers on Atrioventricular Nodal Conduction. J. Clin. Pharmacol. 1988, 28, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; On, Y.K.; Byeon, K.; Kim, J.S.; Choi, J.-O.; Choi, D.-J.; Ryu, K.H.; Jeon, E.-S. Short- and Long-Term Outcomes Depending on Electrical Dyssynchrony Markers in Patients Presenting with Acute Heart Failure. Am. Heart, J. 2013, 165, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Kutyifa, V.; Stockburger, M.; Daubert, J.P.; Holmqvist, F.; Olshansky, B.; Schuger, C.; Klein, H.; Goldenberg, I.; Brenyo, A.; McNitt, S.; et al. PR Interval Identifies Clinical Response in Patients With Non–Left Bundle Branch Block: A Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy Substudy. Circ. Arrhythm. Electrophysiol. 2014, 7, 645–651. [Google Scholar] [CrossRef]
- Olshansky, B.; Day, J.D.; Sullivan, R.M.; Yong, P.; Galle, E.; Steinberg, J.S. Does Cardiac Resynchronization Therapy Provide Unrecognized Benefit in Patients with Prolonged PR Intervals? The Impact of Restoring Atrioventricular Synchrony: An Analysis from the COMPANION Trial. Heart Rhythm 2012, 9, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Gervais, R.; Leclercq, C.; Shankar, A.; Jacobs, S.; Eiskjær, H.; Johannessen, A.; Freemantle, N.; Cleland, J.G.F.; Tavazzi, L.; Daubert, C.; et al. Surface Electrocardiogram to Predict Outcome in Candidates for Cardiac Resynchronization Therapy: A Sub-analysis of the CARE-HF Trial. Eur. J. Heart Fail. 2009, 11, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Bloch Thomsen, P.E.; Jons, C.; Raatikainen, M.J.P.; Moerch Joergensen, R.; Hartikainen, J.; Virtanen, V.; Boland, J.; Anttonen, O.; Gang, U.J.; Hoest, N.; et al. Long-Term Recording of Cardiac Arrhythmias with an Implantable Cardiac Monitor in Patients with Reduced Ejection Fraction After Acute Myocardial Infarction: The Cardiac Arrhythmias and Risk Stratification After Acute Myocardial Infarction (CARISMA) Study. Circulation 2010, 122, 1258–1264. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42D, 3599–3726. [Google Scholar] [CrossRef]
- Zeltser, D.; Justo, D.; Halkin, A.; Rosso, R.; Ish-Shalom, M.; Hochenberg, M.; Viskin, S. Drug-Induced Atrioventricular Block: Prognosis after Discontinuation of the Culprit Drug. J. Am. Coll. Cardiol. 2004, 44, 105–108. [Google Scholar] [CrossRef]
- Knudsen, M.B.; Thøgersen, A.M.; Hjortshøj, S.P.; Riahi, S. The Impact of Drug Discontinuation in Patients Treated with Temporary Pacemaker Due to Atrioventricular Block. J. Cardiovasc. Electrophysiol. 2013, 24, 1255–1258. [Google Scholar] [CrossRef]
- Lee, J.H.; Ryu, H.M.; Bae, M.H.; Kwon, Y.S.; Lee, J.H.; Park, Y.; Heo, J.-H.; Lee, Y.S.; Yang, D.H.; Park, H.S.; et al. Prognosis and Natural History of Drug-Related Bradycardia. Korean Circ. J. 2009, 39, 367. [Google Scholar] [CrossRef]
- Jordán-Martínez, L.; Rivera-López, R.; Bermúdez-Jiménez, F.; Jiménez-Jaimez, J.; Alzueta, J.; Barrera-Cordero, A.; Rivera-Fernández, R.; Jiménez-Navarro, M.; Álvarez, M.; Tercedor, L. Atrioventricular Block in Patients Undergoing Treatment with Bradycardic Drugs. Predictors of Pacemaker Requirement. Rev. Esp. Cardiol. Engl. Ed. 2020, 73, 554–560. [Google Scholar] [CrossRef]
- Kusumoto, F.M.; Schoenfeld, M.H.; Barrett, C.; Edgerton, J.R.; Ellenbogen, K.A.; Gold, M.R.; Goldschlager, N.F.; Hamilton, R.M.; Joglar, J.A.; Kim, R.J.; et al. 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2019, 140. [Google Scholar] [CrossRef]
- Friedman, D.J.; Bao, H.; Spatz, E.S.; Curtis, J.P.; Daubert, J.P.; Al-Khatib, S.M. Association Between a Prolonged PR Interval and Outcomes of Cardiac Resynchronization Therapy: A Report from the National Cardiovascular Data Registry. Circulation 2016, 134, 1617–1628. [Google Scholar] [CrossRef]
- Gavaghan, C. Pacemaker Induced Cardiomyopathy: An Overview of Current Literature. Curr. Cardiol. Rev. 2022, 18, e010921196020. [Google Scholar] [CrossRef]
- Shimony, A.; Eisenberg, M.J.; Filion, K.B.; Amit, G. Beneficial Effects of Right Ventricular Non-Apical vs. Apical Pacing: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Europace 2012, 14, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.A.; Furuya-Kanamori, L.; Kaye, G.; Clark, J.; Doi, S.A.R. The Effect of Right Ventricular Apical and Nonapical Pacing on the Short- and Long-Term Changes in Left Ventricular Ejection Fraction: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Pacing Clin. Electrophysiol. 2015, 38, 1121–1136. [Google Scholar] [CrossRef]
- Kutyifa, V.; Kloppe, A.; Zareba, W.; Solomon, S.D.; McNitt, S.; Polonsky, S.; Barsheshet, A.; Merkely, B.; Lemke, B.; Nagy, V.K.; et al. The Influence of Left Ventricular Ejection Fraction on the Effectiveness of Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2013, 61, 936–944. [Google Scholar] [CrossRef]
- Zeitler, E.P.; Friedman, D.J.; Daubert, J.P.; Al-Khatib, S.M.; Solomon, S.D.; Biton, Y.; McNitt, S.; Zareba, W.; Moss, A.J.; Kutyifa, V. Multiple Comorbidities and Response to Cardiac Resynchronization Therapy. J. Am. Coll. Cardiol. 2017, 69, 2369–2379. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Daubert, J.C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Klein, W.; Tavazzi, L.; The CARE-HF study Steering Committee and Investigators. The CARE-HF Study (CArdiac REsynchronisation in Heart Failure Study): Rationale, Design and Endpoints. Eur. J. Heart Fail. 2001, 3, 481–489. [Google Scholar] [CrossRef]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on Cardiac Pacing and Cardiac Resynchronization Therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef] [PubMed]
- Mesirca, P.; Nakao, S.; Nissen, S.D.; Forte, G.; Anderson, C.; Trussell, T.; Li, J.; Cox, C.; Zi, M. Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circ. Res. 2021, 129, e1–e20. [Google Scholar] [CrossRef] [PubMed]
- Boink, G.J.J.; Coronel, R. Towards Molecular Therapy of Atrioventricular Nodal Dysfunction. Circ. Res. 2021, 129, 6–8. [Google Scholar] [CrossRef]
Study | Author | Follow Up | Population | NYHA Class | Randomization | Outcomes | Results |
---|---|---|---|---|---|---|---|
MADIT-CRT | Arthur J. Moss et al. | 4.5 years | 1820 pts, LVEF ≤ 30%, QRS ≥ 130 ms | I–II | CRT-D vs. ICD alone (3:2) | Death from any cause or a nonfatal HF event | CRT-D vs. ICD alone (17.2% vs. 25.3%), [HR 0.66; 95% CI, 0.52 to 0.84; p = 0.001] |
MADIT-CRT (Long term) | Emily P. Zeitler | 7 years | 1820 pts, LVEF ≤ 30%, QRS ≥ 130 ms | I–II | CRT-D vs. ICD alone (3:2) | Death from any cause or a nonfatal HF event | CRT-D vs. ICD alone [HR 0.66, 95% CI, 0.30 to 1.42; p = 0.29]. |
CARE-HF | John G.F. Cleland et al. | 29.4 months | 813 pts, LVEF ≤ 35%, LVEDDi ≥ 30 mm, QRS ≥ 120 ms | III–IV | GMT + CRT vs. GMT alone (1:1) | Death from any cause or an unplanned hospitalization for a MACVE | CRT vs. GMT alone (39% vs. 55%), [HR 0.63; 95% CI, 0.51 to 0.77; p < 0.001] |
MIRACLE | William T. Abraham et al. | 6 months | 453 pts, LVEF ≤ 35%, QRS ≥ 130 ms, LVEDD ≥ 55 mm, 6MWD ≥ 450 mt | III–IV | GMT + CRT vs. GMT alone (1:1) | Improvement of NYHA functional class, quality of life and the distance walked in six minutes. | GMT + CRT vs. GMT alone: distance walked in six minutes (+39 vs. +10 m, p = 0.005), changes of NYHA classes (p < 0.001), quality of life (18.0 vs. 9.0 points, p = 0.001), time on the treadmill during exercise testing (+81 vs. +19 s, p = 0.001), and ejection fraction (+4.6 percent vs.. 0.2 percent, p < 0.001) |
MUSTIC | Serge Cazeau et al. | 6 months | 67 pts, LVEF ≤ 35%, QRS ≥ 150 ms, LVEDD ≥ 60 mm | III | All received atrio-biventricular pacing. Inactivated pacing vs. Atrio-biventricular pacing | Distance walked in six minutes, quality of life, peak oxygen consumption, hospitalizations related to HF | Atrio-biventricular pacing vs. inactivated pacing (399 ± 100 m vs. 326 ± 134 m, p < 0.001); (−31%, p < 0.001); (−8%, p < 0.03); (−52/3, p < 0.05) |
COMPANION | Michael R. Bristow et al. | 2 years | 1520 pts, LVEF ≤ 35%, QRS ≥ 120 ms, PR > 150 ms | III-IV | GMT vs. GMT + CRTP vs. GMT + CRT-D (1:2:2) | Time to death from or hospitalization for any cause | CRTP + GMT vs. GMT alone (HR 0.81; p = 0.014); CRTD + GMT vs. GMT alone (HR, 0.80; p = 0.01) |
PATH-CHF II | Christoph Stellbrink et al. | 1 year | 77 pts, LVEF ≤ 35%, QRS ≥ 120 ms, PR > 150 ms | II-> IV | ICD vs. ICD + Pacing | Improvement in functional capacity | ICD + Pacing vs. ICD alone (Difference of 12.5% in the primary endpoints with 80% power, p < 0.05) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fumarulo, I.; Salerno, E.N.M.; De Prisco, A.; Ravenna, S.E.; Grimaldi, M.C.; Burzotta, F.; Aspromonte, N. Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives. J. Cardiovasc. Dev. Dis. 2025, 12, 310. https://doi.org/10.3390/jcdd12080310
Fumarulo I, Salerno ENM, De Prisco A, Ravenna SE, Grimaldi MC, Burzotta F, Aspromonte N. Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives. Journal of Cardiovascular Development and Disease. 2025; 12(8):310. https://doi.org/10.3390/jcdd12080310
Chicago/Turabian StyleFumarulo, Isabella, Elia Nunzio Maria Salerno, Andrea De Prisco, Salvatore Emanuele Ravenna, Maria Chiara Grimaldi, Francesco Burzotta, and Nadia Aspromonte. 2025. "Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives" Journal of Cardiovascular Development and Disease 12, no. 8: 310. https://doi.org/10.3390/jcdd12080310
APA StyleFumarulo, I., Salerno, E. N. M., De Prisco, A., Ravenna, S. E., Grimaldi, M. C., Burzotta, F., & Aspromonte, N. (2025). Atrioventricular Node Dysfunction in Heart Failure: New Horizons from Pathophysiology to Therapeutic Perspectives. Journal of Cardiovascular Development and Disease, 12(8), 310. https://doi.org/10.3390/jcdd12080310