Large Mammalian Animal Models of Heart Disease
Abstract
:1. Introduction
2. Dogs
2.1. Blockage-Induced Myocardial Infarction (MI)
2.1.1. Chronic Ischemic Heart Failure (HF)
2.1.2. Sudden Cardiac Death (SCD)
2.2. Spontaneous Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC)
2.3. Non-Ischemic Heart Failure (HF)
2.4. Duchenne Muscle Dystrophy (DMD)
2.5. Chronic Valvular Disease
2.6. Dilated Cardiomyopathy (DCM)
3. Sheep
3.1. Ligation-Induced Myocardial Infarction in Fetal Sheep
3.2. Embolization-Induced MI
3.3. Sudden Cardiac Death (SCD)
4. Pigs
4.1. Blockage-Induced Myocardial Infarction (MI)
4.1.1. Balloon Catheter Procedure
4.1.2. Collagen Injections
4.2. Tetralogy of Fallot (TOF)
5. Non-Human Primates
5.1. Balloon-Induced Myocardial Infarction (MI)
5.2. Coronary Artery Ligation-Induced Myocardial Infarction (MI)
5.3. Tachycardia-Induced Congestive Heart Failure (CHF)
6. Summary and Future Directions
Acknowledgments
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
ARVC | arrhythmogenic right ventricular cardiomyopathy |
AV | atrioventricular |
DCM | dilated cardiomyopathy |
DMD | Duchenne muscular dystrophy |
GRMD | Golden Retriever muscular dystrophy |
HF | heart failure |
ICD | implantable cardioverter defibrillator |
LAD | left anterior descending |
LV | left ventricle |
LVEF | left ventricular ejection fraction |
MI | myocardial infarction |
RA | right atrium |
RV | rights ventricle |
SCD | sudden cardiac death |
TOF | Tetralogy of Fallot |
TP | tachypacing |
VT | ventricular tachycardia |
WHHL-MI | Watanabe heritable hyperlipidemic myocardial infarction |
References
- Patten, R.D.; Hall-Porter, M.R. Small animal models of heart failure: Development of novel therapies, past and present. Circ. Heart Fail. 2009, 2, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Li, W.; Liu, Y.; Zhang, Y.; Jie, S.; Kong, D.; Steinhoff, G.; Ma, N. Animal models of cardiac disease and stem cell therapy. Open Cardiovasc. Med. J. 2010, 4, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.; Roberts, R.M.; Mirochnitchenko, O. Large animal models for stem cell therapy. Stem Cell Res. Ther. 2013, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Graves, J.A. Background and overview of comparative genomics. ILAR J. 1998, 39, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Cavalleri, G.L.; Weale, M.E.; Shianna, K.V.; Singh, R.; Lynch, J.M.; Grinton, B.; Szoeke, C.; Murphy, K.; Kinirons, P.; O’Rourke, D.; et al. Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: A case-control study. Lancet Neurol. 2007, 6, 970–980. [Google Scholar] [CrossRef]
- Chong, J.J.; Murry, C.E. Cardiac regeneration using pluripotent stem cells—Progression to large animal models. Stem Cell Res. 2014, 13, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Hearse, D.J.; Sutherland, F.J. Experimental models for the study of cardiovascular function and disease. Pharmacol. Res. 2000, 41, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Recchia, F.A.; Lionetti, V. Animal models of dilated cardiomyopathy for translational research. Vet. Res. Commun. 2007, 31 (Suppl. 1), 35–41. [Google Scholar] [CrossRef] [PubMed]
- Milani-Nejad, N.; Janssen, P.M. Small and large animal models in cardiac contraction research: Advantages and disadvantages. Pharmacol. Ther. 2014, 141, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.C.; Wallner, K.; Cao, J.M.; Chen, L.S.; Karagueuzian, H.S.; Fishbein, M.C.; Chen, P.S.; Sharifi, B.G. Colocalization of tenascin and sympathetic nerves in a canine model of nerve sprouting and sudden cardiac death. J. Cardiovasc. Electrophysiol. 2000, 11, 1345–1351. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.J.; Tang, Y.; Li, J.; Cui, C.J.; Zhang, H.; Zhang, X.L.; Zhang, H.; Hu, S.S. Cloning and expression pattern of dog SDF-1 and the implications of altered expression of SDF-1 in ischemic myocardium. Cytokine 2007, 40, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Bartunek, J.; Croissant, J.D.; Wijns, W.; Gofflot, S.; de Lavareille, A.; Vanderheyden, M.; Kaluzhny, Y.; Mazouz, N.; Willemsen, P.; Penicka, M.; et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1095–H1104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Honor, L.B.; He, H.; Ma, Q.; Oh, J.H.; Butterfield, C.; Lin, R.Z.; Melero-Martin, J.M.; Dolmatova, E.; Duffy, H.S.; et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J. Clin. Investig. 2011, 121, 1894–1904. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Qi, X.Y.; Wakili, R.; Comtois, P.; Chartier, D.; Harada, M.; Iwasaki, Y.K.; Romeo, P.; Maguy, A.; Dobrev, D.; et al. Mechanisms of atrial tachyarrhythmias associated with coronary artery occlusion in a chronic canine model. Circulation 2011, 123, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.B.; Vanoli, E. Early autonomic and repolarization abnormalities contribute to lethal arrhythmias in chronic ischemic heart failure: Characteristics of a novel heart failure model in dogs with postmyocardial infarction left ventricular dysfunction. J. Am. Coll. Cardiol. 2001, 37, 1741–1748. [Google Scholar] [CrossRef]
- Killingsworth, C.R.; Walcott, G.P.; Gamblin, T.L.; Girouard, S.D.; Smith, W.M.; Ideker, R.E. Chronic myocardial infarction is a substrate for bradycardia-induced spontaneous tachyarrhythmias and sudden death in conscious animals. J. Cardiovasc. Electrophysiol. 2006, 17, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.M.; Chen, L.S.; KenKnight, B.H.; Ohara, T.; Lee, M.H.; Tsai, J.; Lai, W.W.; Karagueuzian, H.S.; Wolf, P.L.; Fishbein, M.C.; et al. Nerve sprouting and sudden cardiac death. Circ. Res. 2000, 86, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.; Fox, P.R.; Meurs, K.M.; Towbin, J.A.; Spier, A.W.; Calabrese, F.; Maron, B.J.; Thiene, G. Arrhythmogenic right ventricular cardiomyopathy causing sudden cardiac death in boxer dogs: A new animal model of human disease. Circulation 2004, 109, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Oxford, E.M.; Everitt, M.; Coombs, W.; Fox, P.R.; Kraus, M.; Gelzer, A.R.; Saffitz, J.; Taffet, S.M.; Moise, N.S.; Delmar, M. Molecular composition of the intercalated disc in a spontaneous canine animal model of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm 2007, 4, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Mauceli, E.; Lahmers, S.; Acland, G.M.; White, S.N.; Lindblad-Toh, K. Genome-wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum. Genet. 2010, 128, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Belevych, A.E.; Terentyev, D.; Terentyeva, R.; Nishijima, Y.; Sridhar, A.; Hamlin, R.L.; Carnes, C.A.; Gyorke, S. The relationship between arrhythmogenesis and impaired contractility in heart failure: Role of altered ryanodine receptor function. Cardiovasc. Res. 2011, 90, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Cassano, M.; Berardi, E.; Crippa, S.; Toelen, J.; Barthelemy, I.; Micheletti, R.; Chuah, M.; Vandendriessche, T.; Debyser, Z.; Blot, S.; et al. Alteration of cardiac progenitor cell potency in grmd dogs. Cell Transplant. 2012, 21, 1945–1967. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.M.; Rush, J.E. Nutrition and cardiomyopathy: Lessons from spontaneous animal models. Curr. Heart Fail. Rep. 2007, 4, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Meurs, K.M.; Lahmers, S.; Keene, B.W.; White, S.N.; Oyama, M.A.; Mauceli, E.; Lindblad-Toh, K. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum. Genet. 2012, 131, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Lukacs, E.; Magyari, B.; Toth, L.; Petrasi, Z.; Repa, I.; Koller, A.; Horvath, I. Overview of large animal myocardial infarction models (review). Acta Physiol. Hung. 2012, 99, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Emmert, M.Y.; Weber, B.; Wolint, P.; Frauenfelder, T.; Zeisberger, S.M.; Behr, L.; Sammut, S.; Scherman, J.; Brokopp, C.E.; Schwartlander, R.; et al. Intramyocardial transplantation and tracking of human mesenchymal stem cells in a novel intra-uterine pre-immune fetal sheep myocardial infarction model: A proof of concept study. PLoS ONE 2013, 8, e57759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allukian, M., 3rd; Xu, J.; Morris, M.; Caskey, R.; Dorsett-Martin, W.; Plappert, T.; Griswold, M.; Gorman, J.H., 3rd; Gorman, R.C.; Liechty, K.W. Mammalian cardiac regeneration after fetal myocardial infarction requires cardiac progenitor cell recruitment. Ann. Thorac. Surg. 2013, 96, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Herdrich, B.J.; Danzer, E.; Davey, M.G.; Allukian, M.; Englefield, V.; Gorman, J.H., 3rd; Gorman, R.C.; Liechty, K.W. Regenerative healing following foetal myocardial infarction. Eur. J. Cardiothorac. Surg. 2010, 38, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, C.; Allukian, M.W.; Xu, J.; Morris, M.W., Jr.; Caskey, R.C.; Herdrich, B.J.; Hu, J.; Gorman, J.H., 3rd; Gorman, R.C.; Liechty, K.W. Mammalian fetal cardiac regeneration after myocardial infarction is associated with differential gene expression compared with the adult. Ann. Thorac. Surg. 2014, 97, 1643–1650. [Google Scholar] [CrossRef] [PubMed]
- Devlin, G.; Matthews, K.; McCracken, G.; Stuart, S.; Jensen, J.; Conaglen, J.; Bass, J. An ovine model of chronic stable heart failure. J. Card. Fail. 2000, 6, 140–143. [Google Scholar] [CrossRef]
- Cui, J.; Li, J.; Mathison, M.; Tondato, F.; Mulkey, S.P.; Micko, C.; Chronos, N.A.; Robinson, K.A. A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovasc. Revasc. Med. 2005, 6, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Ellison, G.M.; Torella, D.; Dellegrottaglie, S.; Perez-Martinez, C.; Perez de Prado, A.; Vicinanza, C.; Purushothaman, S.; Galuppo, V.; Iaconetti, C.; Waring, C.D.; et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J. Am. Coll. Cardiol. 2011, 58, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Chang, M.Y.; Wang, S.S.; Hsieh, P.C. Injection of autologous bone marrow cells in hyaluronan hydrogel improves cardiac performance after infarction in pigs. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1078–H1086. [Google Scholar] [CrossRef] [PubMed]
- Bolli, R.; Tang, X.L.; Sanganalmath, S.K.; Rimoldi, O.; Mosna, F.; Abdel-Latif, A.; Jneid, H.; Rota, M.; Leri, A.; Kajstura, J. Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation 2013, 128, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Schuleri, K.H.; Boyle, A.J.; Centola, M.; Amado, L.C.; Evers, R.; Zimmet, J.M.; Evers, K.S.; Ostbye, K.M.; Scorpio, D.G.; Hare, J.M.; et al. The adult gottingen minipig as a model for chronic heart failure after myocardial infarction: Focus on cardiovascular imaging and regenerative therapies. Comp. Med. 2008, 58, 568–579. [Google Scholar] [PubMed]
- Malliaras, K.; Smith, R.R.; Kanazawa, H.; Yee, K.; Seinfeld, J.; Tseliou, E.; Dawkins, J.F.; Kreke, M.; Cheng, K.; Luthringer, D.; et al. Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation 2013, 128, 2764–2775. [Google Scholar] [CrossRef] [PubMed]
- Okura, H.; Saga, A.; Soeda, M.; Miyagawa, S.; Sawa, Y.; Daimon, T.; Ichinose, A.; Matsuyama, A. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction. Biochem. Biophys. Res. Commun. 2012, 425, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, A.; Guibert, R.; Boudjemline, Y.; Vignon-Clementel, I.E. Blood flow simulations for the design of stented valve reducer in enlarged ventricular outflow tracts. Cardiovasc. Eng. Technol. 2015, 6, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Lambert, V.; Capderou, A.; Le Bret, E.; Rucker-Martin, C.; Deroubaix, E.; Gouadon, E.; Raymond, N.; Stos, B.; Serraf, A.; Renaud, J.F. Right ventricular failure secondary to chronic overload in congenital heart disease: An experimental model for therapeutic innovation. J. Thorac. Cardiovasc. Surg. 2010, 139, 1197–1204. [Google Scholar] [CrossRef] [PubMed]
- Charron, S.; Roubertie, F.; Benoist, D.; Dubes, V.; Gilbert, S.H.; Constantin, M.; Vieillot, D.; Elbes, D.; Quesson, B.; Bordachar, P.; et al. Identification of region-specific myocardial gene expression patterns in a chronic swine model of repaired tetralogy of fallot. PLoS ONE 2015, 10, e0134146. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.T. Primate models for cardiovascular drug research and development. Curr. Opin. Investig. Drugs 2010, 11, 1025–1029. [Google Scholar] [PubMed]
- Chong, J.J.; Yang, X.; Don, C.W.; Minami, E.; Liu, Y.W.; Weyers, J.J.; Mahoney, W.M.; Van Biber, B.; Cook, S.M.; Palpant, N.J.; et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014, 510, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Contamin, H.; Rioufol, G.; Bettinger, T.; Helbert, A.; Portier, K.G.; Lepage, O.M.; Thomas, R.; Broillet, A.; Tranquart, F.; Schneider, M. A minimally-invasive closed chest myocardial occlusion-reperfusion model in rhesus monkeys (Macaca mulatta): Monitoring by contrast-enhanced ultrasound imaging. Int. J. Cardiovasc. Imaging 2012, 28, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Cai, J.; Fan, X.; Han, P.; Xie, Y.; Chen, J.; Xiao, Y.; Kang, Y.J. Decreases in electrocardiographic R-wave amplitude and QT interval predict myocardial ischemic infarction in rhesus monkeys with left anterior descending artery ligation. PLoS ONE 2013, 8, e71876. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, K.E. Autonomic mechanisms and sudden death after abrupt coronary occlusion. Ann. Med. 1999, 31, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.H.; Wolfgang, E.A.; Flynn, D.M.; Doe, C.P.; Knight, D.R. Tachycardia-induced primate model of heart failure in cardiovascular drug discovery. J. Pharmacol. Toxicol. Methods 2000, 43, 125–131. [Google Scholar] [CrossRef]
- Yang, Y.; Gruwel, M.L.; Dreessen de Gervai, P.; Sun, J.; Jilkina, O.; Gussakovsky, E.; Kupriyanov, V. MRI study of cryoinjury infarction in pig hearts: I. Effects of intrapericardial delivery of bFGF/VEGF embedded in alginate beads. NMR Biomed. 2012, 25, 177–188. [Google Scholar] [CrossRef] [PubMed]
Advantages | Disadvantages |
---|---|
|
|
Animals | Induced Model | Spontaneous Model |
---|---|---|
Dogs | MI [10] | ARVC [18] |
Non-ischemic HF [21] | DCM [8] DMD [22] | |
SCD [17] | Valvular disease [23] | |
Sheep | MI [27] | n/a |
SCD [16] | ||
Pigs | Cryoinjury [47] | n/a |
MI [32] | ||
TOF [40] | ||
Non-human Primates | MI [6] CHF [46] | n/a |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camacho, P.; Fan, H.; Liu, Z.; He, J.-Q. Large Mammalian Animal Models of Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 30. https://doi.org/10.3390/jcdd3040030
Camacho P, Fan H, Liu Z, He J-Q. Large Mammalian Animal Models of Heart Disease. Journal of Cardiovascular Development and Disease. 2016; 3(4):30. https://doi.org/10.3390/jcdd3040030
Chicago/Turabian StyleCamacho, Paula, Huimin Fan, Zhongmin Liu, and Jia-Qiang He. 2016. "Large Mammalian Animal Models of Heart Disease" Journal of Cardiovascular Development and Disease 3, no. 4: 30. https://doi.org/10.3390/jcdd3040030
APA StyleCamacho, P., Fan, H., Liu, Z., & He, J. -Q. (2016). Large Mammalian Animal Models of Heart Disease. Journal of Cardiovascular Development and Disease, 3(4), 30. https://doi.org/10.3390/jcdd3040030