Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease
Abstract
:1. Introduction
2. Air Pollutant Exposure and CHD Risk: Epidemiological Evidences
3. Maternal Susceptibility to Air Pollution and CHD Risk
4. Epigenetics: A Possible Link between Air Pollution and Congenital Heart Disease
5. Conclusions
Conflicts of Interest
References
- McConnell, R.; Islam, T.; Shankardass, K.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Gauderman, J.; Avol, E.; Künzli, N.; Yao, L.; et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ. Health Perspect. 2010, 118, 1021–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pope, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Ito, K.; Thurston, G.D. Lung cancer: Cardiopulmonary mortality and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Brunekreef, B.; Beelen, R.; Hoek, G.; Schouten, L.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; van den Brandt, P. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS-AIR study. Res. Rep. Health Eff. Inst. 2009, 139, 5–71. [Google Scholar]
- Perera, F.P.; Jedrychowski, W.; Rauh, V.; Whyatt, R. Molecular epidemiologic research on the effects of environmental pollutants on fetus. Environ. Health Perspect. 1999, 107, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Dolk, H. Epidemiological approaches to identifying environmental causes of birth defects. Am. J. Med. Genet. C Semin. Med. Genet. 2004, 125C, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd. Epidemiology of fine particulate air pollution and human health: Biologic mechanisms and who′s at risk? Environ. Health Perspect. 2000, 108, 713–723. [Google Scholar] [CrossRef] [PubMed]
- EUROCAT (European Surveillance of Congenital Anomalies). EUROCAT Guide 1.3 and Reference Documents. Instructions for the Registration and Surveillance of Congenital Anomalies. 2005. Available online: http://www.eurocat-network.eu/content/EUROCAT-guide-1.3.pdf (accessed on 27 July 2016).
- Gelb, B.D.; Seidman, C.E. The Good SHP2 Association: A porthole into the genetics of congenital heart disease. Circ. Cardiovasc. Genet. 2012, 5, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Vecoli, C.; Pulignani, S.; Foffa, I.; Andreassi, M.G. Congenital heart disease: The crossroads of genetics, epigenetics and environment. Curr. Genomics 2014, 15, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Burns, T.L. Nongenetic risk factors and congenital heart defects. Pediatr. Cardiol. 2013, 34, 1535–1555. [Google Scholar] [CrossRef] [PubMed]
- Thulstrup, A.M.; Bonde, J.P. Maternal occupational exposure and risk of specific birth defects. Occup. Med. 2006, 56, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Lupo, P.J.; Symanski, E.; Langlois, P.H.; Lawson, C.C.; Malik, S.; Gilboa, S.M.; Lee, L.J.; Agopian, A.J.; Desrosiers, T.A.; Waters, M.A.; et al. National Birth Defects Prevention Study. Maternal occupational exposure to polycyclic aromatic hydrocarbons and congenital heart defects among offspring in the national birth defects prevention study. Birth Defects Res. A Clin. Mol. Teratol. 2012, 94, 875–881. [Google Scholar]
- Gilboa, S.M.; Desrosiers, T.A.; Lawson, C.; Lupo, P.J.; Riehle-Colarusso, T.J.; Stewart, P.A.; van Wijngaarden, E.; Waters, M.A.; Correa, A. Association between maternal occupational exposure to organic solvents and congenital heart defects, National Birth Defects Prevention Study, 1997–2002. Occup. Environ. Med. 2012, 69, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Wolffe, A.P.; Matzke, M.A. Epigenetics: Regulation through repression. Science 1999, 286, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Herbstman, J. Prenatal environmental exposure, epigenetics, and disease. Reprod. Toxicol. 2011, 31, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.J.; Correa, A.; Feinstein, J.A.; Botto, L.; Britt, A.E.; Daniels, S.R.; Elixson, M.; Warnes, C.A.; Webb, C.L. Noninherited risk factors and congenital cardiovascular defects: Current knowledge. A scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation 2007, 115, 2995–3014. [Google Scholar] [CrossRef] [PubMed]
- Correa-Villaseñor, A.; Ferencz, C.; Loffredo, C.; Magee, C. Paternal exposures and cardiovascular malformations. The Baltimore-Washington Infant Study Group. J. Expo. Anal. Environ. Epidemiol. 1993, 3, 173–185. [Google Scholar] [PubMed]
- Cresci, M.; Foffa, I.; Ait-Ali, L.; Pulignani, S.; Gianicolo, E.A.; Botto, N.; Picano, E.; Andreassi, M.G. Maternal and paternal environmental risk factors, metabolizing GSTM1 and GSTT1 polymorphisms, and congenital heart disease. Am. J. Cardiol. 2011, 108, 1625–1631. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, K.P.; Zeilmaker, G.A.; Meijer, W.M.; Helbing, W.A.; Steegers-Theunissen, R.P. Periconceptional parental conditions and perimembranous ventricular septal defects in the offspring. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Rankin, J.; Rushton, S.; Pless-Mulloli, T. Ambient air pollution and congenital heart disease: A register-basedstudy. Environ. Res. 2011, 111, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, S.M.; Mendola, P.; Olshan, A.F.; Langlois, P.H.; Savitz, D.A.; Loomis, D.; Herring, A.H.; Fixler, D.E. Relation between ambient air quality and selected birth defects: Seven countystudy: Texas: 1997–2000. Am. J. Epidemiol. 2005, 162, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Ritz, B.; Yu, F.; Fruin, S.; Chapa, G.; Shaw, G.M.; Harris, J.A. Ambient air pollution and risk of birth defects in Southern California. Am. J. Epidemiol. 2002, 155, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.J.; Klein, M.; Correa, A.; Reller, M.D.; Mahle, W.T.; Riehle-Colarusso, T.J.; Botto, L.D.; Flanders, W.D.; Mulholland, J.A.; Siffel, C.; et al. Ambient air pollution and cardiovascular malformations in Atlanta: Georgia: 1986–2003. Am. J. Epidemiol. 2009, 169, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.A.; Barnett, A.G.; Jalaludin, B.B.; Morgan, G.G. Ambient air pollution and birth defects in Brisbane, Australia. PLoS ONE 2009, 4, e5408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schembari, A.; Nieuwenhuijsen, M.J.; Salvador, J.; de Nazelle, A.; Cirach, M.; Dadvand, P.; Beelen, R.; Hoek, G.; Basagaña, X.; Vrijheid, M. Traffic-related air pollution and congenital anomalies in Barcelona. Environ. Health Perspect. 2014, 122, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Stingone, J.A.; Luben, T.J.; Daniels, J.L.; Fuentes, M.; Richardson, D.B.; Aylsworth, A.S.; Herring, A.H.; Anderka, M.; Botto, L.; Correa, A.; et al. National Birth Defects Prevention Study. Maternal exposure to criteria air pollutants and congenital heart defects in offspring: Results from the national birth defects prevention study. Environ. Health Perspect. 2014, 22, 863–872. [Google Scholar] [CrossRef] [PubMed]
- Padula, A.M.; Tager, I.B.; Carmichael, S.L.; Hammond, S.K.; Yang, W.; Lurmann, F.; Shaw, G.M. Ambient air pollution and traffic exposures and congenital heart defects in the San Joaquin Valley of California. Paediatr. Perinat. Epidemiol. 2013, 27, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Agay-Shay, K.; Friger, M.; Linn, S.; Peled, A.; Amitai, Y.; Peretz, C. Air pollution and congenital heart defects. Environ. Res. 2013, 124, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Gianicolo, E.A.; Mangia, C.; Cervino, M.; Bruni, A.; Andreassi, M.G.; Latini, G. Congenital anomalies among live births in a high environmental risk area-a case-control study in Brindisi (southern Italy). Environ. Res. 2014, 128, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Dolk, H.; Armstrong, B.; Lachowycz, K.; Vrijheid, M.; Rankin, J.; Abramsky, L.; Boyd, P.A.; Wellesley, D. Ambient air pollution and risk of congenital anomalies in England: 1991–1999. Occup. Environ. Med. 2010, 67, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.J.; Ha, E.H.; Kim, B.M.; Seo, J.H.; Park, H.S.; Jung, W.J.; Lee, B.E.; Suh, Y.J.; Kim, Y.J.; Lee, J.T.; et al. PM10 and pregnancy outcomes: A hospital- based cohort study of pregnant women in Seoul. J. Occup. Environ. Med. 2007, 49, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Rankin, J.; Rushton, S.; Pless-Mulloli, T. Association between maternal exposure to ambient air pollution and congenital heart disease: A register-based spatio temporal analysis. Am. J. Epidemiol. 2011, 173, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.D. The biological effects of carbon monoxide on the pregnant women: Fetus and newborn infant. Am. J. Obstet. Gynecol. 1977, 129, 69–103. [Google Scholar] [CrossRef]
- Tomaszewski, C. Carbon monoxide poisoning. Early awareness and intervention can save lives. Postgrad Med. 1999, 105, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Aubard, Y.; Magne, I. Carbon monoxide poisoning in pregnancy. BJOG 2000, 107, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, A.; Layon, A.J. Carbon monoxide intoxication during pregnancy: A case presentation and pathophysiologic discussion, with emphasis on molecular mechanisms. J. Clin. Anesth. 1995, 7, 82–87. [Google Scholar] [CrossRef]
- Chen, E.K.; Zmirou-Navier, D.; Padilla, C.; Deguen, S. Effects of air pollution on the risk of congenital anomalies: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2014, 11, 7642–7668. [Google Scholar] [CrossRef] [PubMed]
- Gianicolo, E.A.; Bruni, A.; Rosati, E.; Sabina, S.; Guarino, R.; Padolecchia, G.; Leo, C.; Vigotti, M.A.; Andreassi, M.G.; Latini, G. Congenital anomalies among live births in a polluted area. A ten-year retrospective study. BMC Pregnancy Childbirth 2012, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Chen, Y.; Zhu, X.; Liu, Y.; Zhang, J.; Hou, L.; Xu, Y.; Zhang, C.; Cao, J. Air Pollution and the Risk of Birth Defects in Anqing City, China. J. Occup. Environ. Med. 2016, 58, e124–e127. [Google Scholar] [CrossRef] [PubMed]
- Vrijheid, M.; Martinez, D.; Manzanares, S.; Dadvand, P.; Schembari, A.; Rankin, J.; Nieuwenhuijsen, M. Ambient air pollution and risk of congenital anomalies: A systematic review and meta analysis. Environ. Health Perspect. 2011, 119, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Botto, L.D.; Lin, A.E.; Riehle-Colarusso, T.; Malik, S.; Correa, A. National Birth Defects Prevention Study. Seeking causes: Classifying and evaluating congenital heart defects in etiologic studies. Birth Defects Res. Part A 2007, 79, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Mavroudis, C.; Jacobs, M.L.; Maruszewski, B.; Tchervenkov, C.I.; Lacour-Gayet, F.G.; Clarke, D.R.; Gaynor, J.W.; Spray, T.L.; Kurosawa, H.; et al. Nomenclature and databases—The past, the present, and the future: A primer for the congenital heart surgeon. Pediatr. Cardiol. 2007, 28, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S.R.; Dunstan, F.D.; Fielder, H.; Fone, D.L.; Higgs, G.; Senior, M.L. Risk of congenital anomalies after the opening of landfill sites. Environ. Health Perspect. 2005, 113, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Franco, E.L.; Correa, P.; Santella, R.M.; Wu, X.; Goodman, S.N.; Petersen, G.M. Role and limitations of epidemiology in establishing a causal association. Semin Cancer Biol. 2004, 14, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Kuehl, K.S.; Loffredo, C.A. Genetic and environmental influences on malformations of the cardiac outflow tract. Expert Rev. Cardiovasc. Ther. 2005, 3, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wehby, G.L.; Murray, J.C. Review on genetic variants and maternal smoking in the etiology of oral clefts and other birth defects. Birth Defects Res. C Embryo Today 2008, 84, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Hung, R.J.; Boffetta, P.; Brennan, P.; Malaveille, C.; Hautefeuille, A.; Donato, F.; Gelatti, U.; Spaliviero, M.; Placidi, D.; Carta, A.; et al. GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, Interactions with environmental exposures and bladder cancer risk in a high-risk population. Int. J. Cancer 2004, 110, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Bowers, K.; Li, Q.; Bressler, J.; Avramopoulos, D.; Newschaffer, C.; Fallin, M.D. Glutathione pathway gene variation and risk of autism spectrum disorders. J. Neurodev. Disord. 2011, 3, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Kovač, J.; Macedoni Lukšič, M.; Trebušak Podkrajšek, K.; Klančar, G.; Battelino, T. Rare Single Nucleotide Polymorphisms in the Regulatory Regions of the Superoxide Dismutase Genes in Autism Spectrum Disorder. Autism Res. 2014, 7, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Kurahashi, N.; Sata, F.; Kasai, S.; Shibata, T.; Moriya, K.; Yamada, H.; Kakizaki, H.; Minakami, H.; Nonomura, K.; Kishi, R. Maternal genetic polymorphisms in CYP1A1: GSTM1 and GSTT1 and the risk of hypospadias. Mol. Hum. Reprod. 2005, 1, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ferreira de Almeida, T.; Bertola, D.R. Microdeletion 11q13.1.q13.2 in a patient presenting with developmental delay, facial dysmorphism, and esophageal atresia: Possible role of the GSTP1 gene in esophagus malformation. Birth Defects Res. A Clin. Mol. Teratol. 2013, 97, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Garlantézec, R.; Chevrier, C.; Coiffec, I.; Celebi, C.; Cordier, S. Combined effect of prenatal solvent exposure and GSTT1 or GSTM1 polymorphisms in the risk of birth defects. Birth Defects Res. A Clin. Mol. Teratol. 2012, 94, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xie, L.; Zhou, K.; Zhan, Y.; Li, Y.; Li, H.; Qiao, L.; Wang, F.; Hua, Y. Increased risk for congenital heart defects in children carrying the ABCB1 Gene C3435T polymorphism and maternal periconceptional toxicants exposure. PLoS ONE 2013, 8, e68807. [Google Scholar]
- Prouillac, C.; Lecoeur, S. The role of the placenta in fetal exposure to xenobiotics: Importance of membrane transporters and human models for transfer studies. Drug Metab. Dispos. 2010, 38, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Myllynen, P.; Immonen, E.; Kummu, M.; Vahakangas, K. Developmental expression of drug metabolizing enzymes and transporter proteins in human placenta and fetal tissues. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1483–1499. [Google Scholar] [CrossRef] [PubMed]
- Vahakangas, K.; Myllynen, P. Drug transporters in the human blood placental barrier. Br. J. Pharmacol. 2009, 158, 665–678. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Christensen, K.; Weinberg, C.R.; Romitti, P.; Bathum, L.; Lozada, A.; Morris, R.W.; Lovett, M.; Murray, J.C. Orofacial cleft risk is increased with maternal smoking and specific detoxification gene variants. Am. J. Hum. Genet. 2007, 80, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Chen, J.; Ko, C.I.; Fan, Y.; Carreira, V.; Chen, Y.; Xia, Y.; Medvedovic, M.; Puga, A. Disruption of aryl hydrocarbon receptor homeostatic levels during embryonic stem cell differentiation alters expression of homeobox transcription factors that control cardiomyogenesis. Environ. Health Perspect. 2013, 121, 1334–1343. [Google Scholar] [CrossRef] [PubMed]
- Carreira, V.S.; Fan, Y.; Wang, Q.; Zhang, X.; Kurita, H.; Ko, C.I.; Naticchioni, M.; Jiang, M.; Koch, S.; Medvedovic, M.; et al. Ah Receptor Signaling Controls the Expression of Cardiac Development and Homeostasis Genes. Toxicol. Sci. 2015, 147, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Carreira, V.S.; Fan, Y.; Kurita, H.; Wang, Q.; Ko, C.I.; Naticchioni, M.; Jiang, M.; Koch, S.; Zhang, X.; Biesiada, J.; et al. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult. PLoS ONE 2015, 10, e0142440. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.L.; Craig, J.M.; Morley, R.; Olsson, C.A.; Dwyer, T.; Smith, K.; Saffery, R. Prospects for epigenetic epidemiology. Am. J. Epidemiol. 2009, 169, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Dolinoy, D.C.; Weidman, J.R.; Waterland, R.A.; Jirtle, R.L. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ. Health Perspect. 2006, 114, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Reamon-Buettner, S.M.; Borlak, J. A new paradigm in toxicology and teratology: Altering gene activity in the absence of DNA sequence variation. Reprod. Toxicol. 2007, 24, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; de Iuliis, G.N. Origins and consequences of DNA damage in male germ cells. Reprod. BioMed. Online 2007, 14, 727–733. [Google Scholar] [CrossRef]
- Reik, W.; Dean, W.; Walter, J. Epigenetic reprogramming in mammalian development. Science 2001, 293, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.G.; Godderis, L.; Pieters, N.; Poels, K.; Kiciński, M.; Cuypers, A.; Fierens, F.; Penders, J.; Plusquin, M.; Gyselaers, W.; Nawrot, T.S. Placental DNA hypomethylation in association with particulate air pollution in early life. Part. Fibre. Toxicol. 2013, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Mandò, C.; de Palma, C.; Stampalija, T.; Anelli, G.M.; Figus, M.; Novielli, C.; Parisi, F.; Clementi, E.; Ferrazzi, E.; Cetin, I. Placental mitochondrial content and function in intrauterine growth restriction and preeclampsia. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E404–E413. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yin, Y.; Guo, F.; Wang, J.; Wang, K.; Chen, Q. Placental expression of VEGF is increased in pregnancies with hydatidiform mole: Possible association with developing very early onset preeclampsia. Early Hum. Dev. 2013, 89, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Green, B.B.; Marsit, C.J. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues. Curr. Environ. Health Rep. 2015, 2, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Madrigano, J.; Baccarelli, A.; Mittleman, M.A.; Wright, R.O.; Sparrow, D.; Vokonas, P.S.; Tarantini, L.; Schwartz, J. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environ. Health Perspect. 2011, 119, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhang, X.; Tarantini, L.; Nordio, F.; Bonzini, M.; Angelici, L.; Marinelli, B.; Rizzo, G.; Cantone, L.; Apostoli, P.; Bertazzi, P.A.; Baccarelli, A. Ambient PM exposure and DNA methylation in tumor suppressor genes: A cross-sectional study. Part. Fibre. Toxicol. 2011, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Perera, F.; Tang, W.Y.; Herbstman, J.; Tang, D.; Levin, L.; Miller, R.; Ho, S.M. Relation of DNA methylation of 5'-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS ONE 2009, 4, 4488. [Google Scholar] [CrossRef]
- Kile, M.L.; Baccarelli, A.; Hoffman, E.; Tarantini, L.; Quamruzzaman, Q.; Rahman, M.; Mahiuddin, G.; Mostofa, G.; Hsueh, Y.-M.; Wright, R.O.; Christiani, D.C. Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes. Environ. Health Perspect. 2012, 120, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Qian, Y.; Wang, H.; Ma, X.; Zhang, P.; Diao, L.; An, Q.; Chen, L.; Ma, D.; Huang, G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with Tetralogy of Fallot. BMC Med. Genom. 2013, 1, 6–46. [Google Scholar]
- Serra-Juhé, C.; Cuscó, I.; Homs, A.; Flores, R.; Torán, N.; Pérez-Jurado, L.A. DNA methylation abnormalities in congenital heart disease. Epigenetics 2015, 10, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef] [PubMed]
- Bruneau, B.G. Chromatin remodeling in heart development. Curr. Opin. Genet. Dev. 2010, 20, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Grozinger, C.M.; Schreiber, S.L. Deacetylase enzymes: Biological functions and the use of small-molecule inhibitors. Chem. Biol. 2002, 9, 3–16. [Google Scholar] [CrossRef]
- Montgomery, R.L.; Davis, C.A.; Potthoff, M.J.; Haberland, M.; Fielitz, J.; Qi, X.; Hill, J.A.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis growth and contractility. Genes Dev. 2007, 21, 1790–1802. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, P.S.; Rahman, I.; Donaldson, K.; MacNee, W. Histone acetylation regulates epithelial IL-8 release mediated by oxidative stress from environmental particles. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L533–L540. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Bromberg, P.A.; Samet, J.M. COX-2 expression induced by diesel particles involves chromatin modification and degradation of HDAC1. Am. J. Respir. Cell. Mol. Biol. 2007, 37, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Standart, N. How do microRNAs regulate gene expression? Sci. STKE 2007, re1. [Google Scholar] [CrossRef] [PubMed]
- Pillai, R.S.; Bhattacharyya, S.N.; Filipowicz, W. Repression of protein synthesis by miRNAs: How many mechanisms? Trends Cell Biol. 2007, 17, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Vrijens, K.; Bollati, V.; Nawrot, T.S. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ. Health Perspect. 2015, 123, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Fossati, S.; Baccarelli, A.; Zanobetti, A.; Hoxha, M.; Vokonas, P.S.; Wright, R.O.; Schwartz, J. Ambient particulate air pollution a nd microRNAs in elderly men. Epidemiology 2014, 25, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Bollati, V.; Marinelli, B.; Apostoli, P.; Bonzini, M.; Nordio, F.; Hoxha, M.; Pegoraro, V.; Motta, V.; Tarantini, L.; Cantone, L.; et al. Exposure to Metal-Rich Particulate Matter Modifies the Expression of Candidate MicroRNAs in Peripheral Blood Leukocytes. Environ. Health Perspect. 2010, 118, 763–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fry, R.C.; Rager, J.E.; Bauer, R.; Sebastian, E.; Peden, D.B.; Jaspers, I.; Alexis, N.E. Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L1129–L1137. [Google Scholar] [CrossRef] [PubMed]
- Avissar-Whiting, M.; Veiga, K.; Uhl, K.; Maccani, M.; Gagne, L.; Moen, E.; Marsit, C.J. Bisphenol A exposure Leads to specific microRNA alterations in placental cells. Reprod. Toxicol. 2010, 29, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Herberth, G.; Bauer, M.; Gasch, M.; Hinz, D.; Röder, S.; Olek, S.; Kohajda, T.; Rolle-Kampczyk, U.; von Bergen, M.; Sack, U.; et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J. Allergy Clin. Immunol. 2014, 133, 543–550.e4. [Google Scholar] [CrossRef] [PubMed]
- Cordes, K.R.; Sheehy, N.T.; White, M.P.; Berry, E.C.; Morton, S.U.; Muth, A.N.; Lee, T.H.; Miano, J.M.; Ivey, K.N.; Srivastava, D. MicroRNAs in cardiac development. Pediatr. Cardiol. 2010, 31, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Samal, E.; Srivastava, D. Serum sponse factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005, 436, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kwon, C.; Han, Z.; Olson, E.N.; Srivastava, D. MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc. Natl. Acad. Sci. USA 2005, 102, 18986–18991. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ransom, J.F.; Li, A.; Vedantham, V.; von Drehle, M.; Muth, A.N.; Tsuchihashi, T.; McManus, M.T.; Schwartz, R.J.; Srivastava, D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007, 129, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Sabina, S.; Pulignani, S.; Rizzo, M.; Cresci, M.; Vecoli, C.; Foffa, I.; Ait-Ali, L.; Pitto, L.; Andreassi, M.G. Germline hereditary: Somatic mutations and microRNAs targeting-SNPs in congenital heart defects. J. Mol. Cell. Cardiol. 2013, 60, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Cao, L.; Zhu, J.; Kong, L.; Jin, J.; Qian, L.; Zhu, C.; Hu, X.; Li, M.; Guo, X.; et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin. Chim. Acta 2013, 424, 66–72. [Google Scholar] [CrossRef] [PubMed]
Reference | Setting | Study Design | Air Pollutants Measured | Air Pollutants Found Associated with CHD |
---|---|---|---|---|
Dadvand et al. 2011 [20] | Northeast of UK 1993–2003 | Case-control, frequency matching | SO2, NO2, CO, PM10 | NO2, CO |
Gilboa et al. 2005 [21] | Texas, USA 1997–2000 | Case-control, frequency matching | SO2, NO2, CO, PM10 | SO2, CO, PM10 |
Ritz et al. 2002 [22] | California, USA 1987–1993 | Case-control, no matching | CO | CO |
Strickland et al. 2009 [23] | Atlanta, USA 1986–2003 | Cohort | SO2, NO2, CO, PM10, PM2.5 | PM2.5, NO2 |
Hansen et al. 2009 [24] | Brisbane, Australia 1998–2004 | Case-control, individual matching | SO2, NO, CO, PM10 | No significant association |
Schembari et al. 2013 [25] | Barcelona, Spain 1994–2006 | Case-control, no matching | NO2, NOx, PM10, PM2.5, PMcoarse | NO2, PMcoarse |
Stingone et al. 2014 [26] | Nine U.S.states 1997–2006 | Case-control, no matching | NO2, SO2, PM10, PM2.5, CO | NO2, PM2.5, |
Padula et al. 2013 [27] | California, USA 1997–2006 | Case-control, no matching | NO, NO2, PM10, PM2.5, CO | PM10, PM2.5 |
Agay-Shay et al. 2013 [28] | Tel-Aviv, Israel 2000–2006 | Case-control, no matching | NO2, SO2, PM10, PM2.5, CO | PM10 |
Gianicolo et al. 2014 [29] | Brindisi, Italy 2000–2010 | Case-control, individual matching | SO2 | SO2 |
Dolk et al. 2010 [30] | Wessex, North West Thamas, Oxford and Northern of UK 1991–1999 | Cohort | SO2, NO2, PM10 | SO2, PM10 |
Kim et al. 2007 [31] | Seoul, Korea 2001–2004 | Birth cohort | PM10 | PM10 |
Dadvand et al. 2011 [32] | Northeast of UK 1985–1996 | Case-control, frequency matching | SO2 | No significant association |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vecoli, C.; Pulignani, S.; Andreassi, M.G. Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 32. https://doi.org/10.3390/jcdd3040032
Vecoli C, Pulignani S, Andreassi MG. Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2016; 3(4):32. https://doi.org/10.3390/jcdd3040032
Chicago/Turabian StyleVecoli, Cecilia, Silvia Pulignani, and Maria Grazia Andreassi. 2016. "Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease" Journal of Cardiovascular Development and Disease 3, no. 4: 32. https://doi.org/10.3390/jcdd3040032
APA StyleVecoli, C., Pulignani, S., & Andreassi, M. G. (2016). Genetic and Epigenetic Mechanisms Linking Air Pollution and Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 3(4), 32. https://doi.org/10.3390/jcdd3040032