Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Consent
2.2. Analysis of Human Aortic Valve Tissue
2.3. Fly Stocks
2.4. Fly Heart Staining and Image-Based Heart Performance Assay
2.5. Quantitative RT-PCR
2.6. Cloning of Full-Length and Truncated Mouse Kif1A
2.7. Cell Culture and Transfection
2.8. Immunostaining
2.9. Immunoprecipitation and Western Blot
3. Results
3.1. Molecular Mapping of the t(2,8;q37,p11) Chromosomal Translocation Breakpoint in a Patient with Left-Sided Congenital Heart Defects
3.2. Kif1A Overexpression Impairs Cardiac Function
3.3. Kif1A Overexpression Impairs Cardiac Morphology
3.4. Kif1A Overexpression Does Not Affect Early Cardiac Development
3.5. Overexpression of Kif1A Affects Actin Fiber Distribution and Mammalian Cell Morphology
3.6. Kif1A OE Affects Cell Viability and Cell Polarity
3.7. Overexpression of Kif1A Inhibits Muscle Maturation
4. Discussion
Pathological Effects Associated with Kif1A Overexpression in the Heart
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdulla, R. Perspective in pediatric cardiology. Volume 5. Genetic and environmental risk factors of major cardiovascular malformations. Pediatr. Cardiol. 1998, 19. [Google Scholar] [CrossRef] [PubMed]
- Grossfeld, P.D. The genetics of congenital heart disease. J. Nucl. Cardiol. 2003, 10, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Grossfeld, P.D. The genetics of hypoplastic left heart syndrome. Cardiol. Young 1999, 9, 627–632. [Google Scholar] [CrossRef] [PubMed]
- deAlmeida, A.; McQuinn, T.; Sedmera, D. Increased ventricular preload is compensated by myocyte proliferation in normal and hypoplastic fetal chick left ventricle. Circ. Res. 2007, 100, 1363–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohlmeyer, T.J.; Helmke, S.; Ge, S.; Lynch, J.; Brodsky, G.; Sederberg, J.H.; Robertson, A.D.; Minobe, W.; Bristow, M.R.; Perryman, M.B. Hypoplastic left heart syndrome myocytes are differentiated but possess a unique phenotype. Cardiovasc. Pathol. 2003, 12, 23–31. [Google Scholar] [CrossRef]
- Elliott, D.A.; Kirk, E.P.; Yeoh, T.; Chandar, S.; McKenzie, F.; Tayor, P.; Grossfeld, P.; Fatkin, D.; Jones, O.; Hayes, P.; et al. Cardiac homeobox gene NKX2-5 mutations and congenital heart disease: Associations with atrial septal defect and hypoplastic left heart syndrome. J. Am. Coll. Cardiol. 2003, 41, 2072–2076. [Google Scholar] [CrossRef] [Green Version]
- Pashmforoush, M.; Lu, J.T.; Chen, H.; Amad, T.S.; Kondo, R.; Pradervand, S.; Evans, S.M.; Clark, B.; Feramisco, J.R.; Giles, W.; et al. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 2004, 117, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, N. The mechanisms of fast and slow transport in neurons: Identification and characterization of the new kinesin superfamily motors. Curr. Opin. Neurobiol. 1997, 7, 605–614. [Google Scholar] [CrossRef]
- Hirokawa, N.; Nitta, R.; Okada, Y. The mechanisms of kinesin motor motility: Lessons from the monomeric motor KIF1A. Nature reviews. Mol. Cell Boil. 2009, 10, 877–884. [Google Scholar]
- Miki, H.; Okada, Y.; Hirokawa, N. Analysis of the kinesin superfamily: Insights into structure and function. Trends Cell Biol. 2005, 15, 467–476. [Google Scholar] [CrossRef]
- Marszalek, J.R.; Ruiz-Lozano, P.; Roberts, E.; Chien, K.R.; Goldstein, L.S. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl. Acad. Sci. USA 1999, 96, 5043–5048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Pan, X.; Fan, Y.; Hu, X.; Liu, X.; Xiang, M.; Wang, J. Dysregulated expression of microRNAs and mRNAs in myocardial infarction. Am. J. Transl Res. 2015, 7, 2291–2304. [Google Scholar] [PubMed]
- Yoshikawa, K.; Kuwahara, M.; Saigoh, K.; Ishiura, H.; Yamagishi, Y.; Hamano, Y.; Samukawa, M.; Suzuki, H.; Hirano, M.; Mitsui, Y.; et al. The novel de novo mutation of KIF1A gene as the cause for Spastic paraplegia 30 in a Japanese case. eNeurologicalSci 2019, 14, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Ocorr, K.; Reeves, N.L.; Wessells, R.J.; Fink, M.; Chen, H.S.; Akasaka, Y.; Yasuda, S.; Metzger, J.M.; Giles, W.; Posakony, J.W.; et al. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc. Natl. Acad. Sci. USA 2007, 104, 3943–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ocorr, K.; Fink, M.; Cammarato, A.; Bernstein, S.; Bodmer, R. Semi-automated Optical Heartbeat Analysis of Small Hearts. JoVE 2009, 35, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, M.; Callol-Massot, C.; Chu, A.; Ruiz-Lozano, P.; Izpisua-Belmonte, J.C.; Giles, W.; Bodmer, R.; Ocorr, K. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts. BioTechniques 2009, 46, 101–113. [Google Scholar] [CrossRef]
- Alayari, N.N.; Vogler, G.; Taghli-Lamallem, O.; Ocorr, K.; Bodmer, R.; Cammarato, A. Fluorescent labeling of Drosophila heart structures. JoVE 2009, 32. [Google Scholar] [CrossRef] [Green Version]
- Doherty, E.S.; Lacbawan, F.L. 2q37 Microdeletion Syndrome; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Stephens, K., Amemiya, A., Eds.; GeneReviews: Seattle University of Washington: Seattle, WA, USA, 1993; pp. 1993–2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1158/ (accessed on 30 May 2020).
- Neely, A.; Wei, X.; Olcese, R.; Birnbaumer, L.; Stefani, E. Potentiation by the beta subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 1993, 262, 575–578. [Google Scholar] [CrossRef]
- Taghli-Lamallem, O.; Akasaka, T.; Hogg, G.; Nudel, U.; Yafee, D.; Chamberlain, J.S.; Ocorr, K.; Bodmer, R. Dystrophin deficiency in Drosophila reduces lifespan and causes a dilated cardiomyopathy phenotype. Aging Cell 2008, 7, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Cammarato, A.; Dambacher, C.M.; Knowles, A.F.; Kronert, W.A.; Bodmer, R.; Ocorr, K.; Bernstein, S.I. Myosin transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol. Biol. Cell 2008, 19, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Akasaka, T.; Klinedinst, S.; Ocorr, K.; Busamante, E.; Kim, S.K.; Bodmer, R. The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proc. Natl. Acad. Sci. USA 2006, 103, 11999–12004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, Y.; Yamazaki, H.; Sekine-Aizawa, Y.; Hirokawa, N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell 1995, 81, 769–780. [Google Scholar] [CrossRef] [Green Version]
- Brand, A.H.; Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993, 118, 401–415. [Google Scholar] [PubMed]
- Yonekawa, Y.; Harada, A.; Okada, Y.; Funakoshi, T.; Kanai, Y.; Takei, Y.; Noda, T.; Hirokawa, N. Defect in synaptic vesicle precursor transport and neuronal cell death in KIF1A motor protein-deficient mice. J. Cell Biol. 1998, 141, 431–441. [Google Scholar]
- Curtis, N.J.; Ringo, J.M.; Dowse, H.B. Morphology of the pupal heart, adult heart, and associated tissues in the fruit fly, Drosophila melanogaster. J. Morphol. 1999, 240, 225–235. [Google Scholar] [CrossRef]
- Molina, M.R.; Cripps, R.M. Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech. Dev. 2001, 109, 51–59. [Google Scholar] [CrossRef]
- Lee, J.R.; Shin, H.; Choi, J.; Ko, J.; Kim, S.; Lee, H.W.; Kim, K.; Rho, S.H.; Lee, J.H.; Song, H.E.; et al. An intramolecular interaction between the FHA domain and a coiled coil negatively regulates the kinesin motor KIF1A. EMBO 2004, 23, 1506–1515. [Google Scholar] [CrossRef] [Green Version]
- Klopfenstein, D.R.; Tomishige, M.; Stuurman, N.; Vale, R.D. Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 2002, 109, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.A.; Huang, A.M.; Chou, C.K.; Liaw, G.J.; Wu, C.W. Utilization of Drosophila eye to probe the functions of two mammalian serine/threonine kinases, Snk and HsHPK. J. Biomed. Sci. 2001, 8, 270–277. [Google Scholar] [CrossRef]
- Calleja, M.; Renaud, O.; Usui, K.; Pistillo, D.; Morata, G.; Simpson, P. How to pattern an epithelium: Lessons from achaete-scute regulation on the notum of Drosophila. Gene 2002, 292, 1–12. [Google Scholar] [CrossRef]
- Moses, K.; Rubin, G.M. Glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev. 1991, 5, 583–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitzler, P.; Haenlin, M.; Ramain, P.; Calleja, M.; Simpson, P. A genetic analysis of pannier, a gene necessary for viability of dorsal tissues and bristle positioning in Drosophila. Genetics 1996, 143, 1271–1286. [Google Scholar] [PubMed]
- Yoshioka, Y.; Nguyen, T.T.; Fujiwara, S.; Matsuda, R.; Valdez-Graham, V.; Zurita, M.; Yamaguchi, M. Drosophila DREF acting via the JNK pathway is required for thorax development. Genesis 2012, 50, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Aprodu, I.; Soncini, M.; Redaelli, A. Interaction forces and interface properties of KIF1A kinesin-alphabeta tubulin complex assessed by molecular dynamics. J. Biomech. 2008, 41, 3196–3201. [Google Scholar] [CrossRef]
- Li, X.; Shi, L.; Xu, M.; Zheng, X.; Yu, Y.; Jin, J. RCAN1 Mutation and Functional Characterization in Children with Sporadic Congenital Heart Disease. Pediatr. Cardiol. 2018, 39, 226–235. [Google Scholar] [CrossRef]
- Briegel, K.J.; Baldwin, H.S.; Epstein, J.A.; Joyner, A.L. Congenital heart disease reminiscent of partial trisomy 2p syndrome in mice transgenic for the transcription factor Lbh. Development 2005, 132, 3305–3316. [Google Scholar] [CrossRef] [Green Version]
- Harvey, P.A.; Leinwand, L.A. The cell biology of disease: Cellular mechanisms of cardiomyopathy. J. Cell Biol. 2011, 194, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Debold, E.P.; Saber, W.; Cheema, Y.; Bookwalter, C.S.; Trybus, K.M.; Warshaw, D.M.; Vaburen, P. Human actin mutations associated with hypertrophic and dilated cardiomyopathies demonstrate distinct thin filament regulatory properties in vitro. J. Mol. Cell Cardiol. 2010, 48, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Gaber, N.; Gagliardi, M.; Patel, P.; Kinnear, C.; Zhang, C.; Chitaya, D.; Shannon, P.; Jaeggi, E.; Tabouri, U.; Keller, G.; et al. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation. Am. J. Pathol. 2013, 183, 720–734. [Google Scholar] [CrossRef] [Green Version]
- Cole, C.R.; Eghtesady, P. The myocardial and coronary histopathology and pathogenesis of hypoplastic left heart syndrome. Cardiol. Young 2016, 26, 19–29. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akasaka, T.; Ocorr, K.; Lin, L.; Vogler, G.; Bodmer, R.; Grossfeld, P. Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2020, 7, 22. https://doi.org/10.3390/jcdd7020022
Akasaka T, Ocorr K, Lin L, Vogler G, Bodmer R, Grossfeld P. Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2020; 7(2):22. https://doi.org/10.3390/jcdd7020022
Chicago/Turabian StyleAkasaka, Takeshi, Karen Ocorr, Lizhu Lin, Georg Vogler, Rolf Bodmer, and Paul Grossfeld. 2020. "Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease" Journal of Cardiovascular Development and Disease 7, no. 2: 22. https://doi.org/10.3390/jcdd7020022
APA StyleAkasaka, T., Ocorr, K., Lin, L., Vogler, G., Bodmer, R., & Grossfeld, P. (2020). Overexpression of Kif1A in the Developing Drosophila Heart Causes Valvar and Contractility Defects: Implications for Human Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 7(2), 22. https://doi.org/10.3390/jcdd7020022