Length of Hospitalization-Related Differences and Associated Long-Term Prognosis of Patients with Cardiac Resynchronization Therapy: A Propensity Score-Matched Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Study Outcomes and Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Cardiac Function and Study Outcomes during Follow-Up
3.3. Sensitivity Analysis Using GenMatch Matching
3.4. Changes in LOH across Surgery Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mosterd, A.; Hoes, A.W. Clinical epidemiology of heart failure. Heart 2007, 93, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Niu, H.; Hua, W. Letter regarding the article ‘Clinical implications of left atrial changes after optimization of medical therapy in patients with heart failure’. Eur. J. Heart Fail. 2022. [Google Scholar] [CrossRef] [PubMed]
- Bogale, N.; Priori, S.; Gitt, A.; Alings, M.; Linde, C.; Dickstein, K. The European cardiac resynchronization therapy survey: Patient selection and implantation practice vary according to centre volume. Europace 2011, 13, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Atherton, G.; McAloon, C.J.; Chohan, B.; Heining, D.; Anderson, B.; Barker, J.; Randeva, H.; Osman, F. Safety and Cost-Effectiveness of Same-Day Cardiac Resynchronization Therapy and Implantable Cardioverter Defibrillator Implantation. Am. J. Cardiol. 2016, 117, 1488–1493. [Google Scholar] [CrossRef] [PubMed]
- Banks, H.; Torbica, A.; Valzania, C.; Varabyova, Y.; Prevolnik Rupel, V.; Taylor, R.S.; Hunger, T.; Walker, S.; Boriani, G.; Fattore, G. Five year trends (2008–2012) in cardiac implantable electrical device utilization in five European nations: A case study in cross-country comparisons using administrative databases. Europace 2018, 20, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, A.; Braunstein, E.D.; Umadat, G.; Ahsan, H.; Lin, J.; Palma, E.C. Utility of the Modified Frailty Index to Predict Cardiac Resynchronization Therapy Outcomes and Response. Am. J. Cardiol. 2020, 125, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Cai, M.; Hua, W.; Hu, Y.; Niu, H.; Cai, C.; Gu, M.; Zhang, S. Prognostic effects of longitudinal changes in left ventricular ejection fraction with cardiac resynchronization therapy. ESC Heart Fail. 2021, 8, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.C.; Zuo, L.; Chen, J.H.; Luo, Q.; Yu, X.Q.; Li, Y.; Xu, J.S.; Huang, S.M.; Wang, L.N.; Huang, W.; et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2937–2944. [Google Scholar] [CrossRef] [PubMed]
- Bangalore, S.; Guo, Y.; Samadashvili, Z.; Blecker, S.; Xu, J.; Hannan, E.L. Everolimus-eluting stents or bypass surgery for multivessel coronary disease. N. Engl. J. Med. 2015, 372, 1213–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normand, S.T.; Landrum, M.B.; Guadagnoli, E.; Ayanian, J.Z.; Ryan, T.J.; Cleary, P.D.; McNeil, B.J. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J. Clin. Epidemiol. 2001, 54, 387–398. [Google Scholar] [CrossRef]
- Noah, M.A.; Peek, G.J.; Finney, S.J.; Griffiths, M.J.; Harrison, D.A.; Grieve, R.; Sadique, M.Z.; Sekhon, J.S.; McAuley, D.F.; Firmin, R.K.; et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011, 306, 1659–1668. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, J.S.; Grieve, R.D. A matching method for improving covariate balance in cost-effectiveness analyses. Health Econ. 2012, 21, 695–714. [Google Scholar] [CrossRef] [PubMed]
- Daghistani, T.A.; Elshawi, R.; Sakr, S.; Ahmed, A.M.; Al-Thwayee, A.; Al-Mallah, M.H. Predictors of in-hospital length of stay among cardiac patients: A machine learning approach. Int. J. Cardiol. 2019, 288, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Linde, C.; Gold, M.R.; Abraham, W.T.; St John Sutton, M.; Ghio, S.; Cerkvenik, J.; Daubert, C. Long-term impact of cardiac resynchronization therapy in mild heart failure: 5-year results from the REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction (REVERSE) study. Eur. Heart J. 2013, 34, 2592–2599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daubert, C.; Behar, N.; Martins, R.P.; Mabo, P.; Leclercq, C. Avoiding non-responders to cardiac resynchronization therapy: A practical guide. Eur. Heart J. 2017, 38, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.X.; Chen, L.; Xu, A.M. A Simple Model Established by Blood Markers Predicting Overall Survival After Radical Resection of Pancreatic Ductal Adenocarcinoma. Front. Oncol 2020, 10, 583. [Google Scholar] [CrossRef] [PubMed]
- Brignole, M.; Pentimalli, F.; Palmisano, P.; Landolina, M.; Quartieri, F.; Occhetta, E.; Calò, L.; Mascia, G.; Mont, L.; Vernooy, K.; et al. AV junction ablation and cardiac resynchronization for patients with permanent atrial fibrillation and narrow QRS: The APAF-CRT mortality trial. Eur. Heart J. 2021, 42, 4731–4739. [Google Scholar] [CrossRef] [PubMed]
- Gulletta, S.; Gasperetti, A.; Schiavone, M.; Vogler, J.; Fastenrath, F.; Breitenstein, A.; Laredo, M.; Palmisano, P.; Mitacchione, G.; Compagnucci, P.; et al. Age-related differences and associated mid-term outcomes of subcutaneous implantable cardioverter-defibrillators: A propensity-matched analysis from a multicenter European registry. Heart Rhythm 2022, 19, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Before Matching | After Matching | ||||
---|---|---|---|---|---|---|
Standard LOH (n = 175) | Prolonged LOH (n = 508) | Standardized Difference (%) | Standard LOH (n = 172) | Prolonged LOH (n = 172) | Standardized Difference (%) | |
LOH, day | 5.59 ± 1.47 | 14.15 ± 5.93 | 198.0 | 5.60 ± 1.47 | 14.03 ± 5.40 | 213.0 |
Age, y | 58.64 ± 11.33 | 59.23 ± 11.58 | 5.0 | 58.57 ± 11.39 | 59.39 ± 11.22 | 7.2 |
Male, n (%) | 118 (67.43) | 347 (68.31) | 2.0 | 116 (67.4) | 115 (66.9) | 1.2 |
BMI, kg/m2 | 24.84 ± 4.97 | 24.37 ± 3.69 | 11.0 | 24.84 ± 4.97 | 24.25 ± 3.63 | 13.6 |
Comorbidity, n (%) | ||||||
LBBB | 137 (78.74) | 364 (71.94) | 16.0 | 137 (79.7) | 120 (69.8) | 18.9 |
Hypertension | 59 (33.91) | 186 (36.69) | 6.0 | 58 (33.7) | 68 (39.5) | 9.1 |
Diabetes | 46 (26.44) | 123 (24.26) | 5.0 | 45 (26.2) | 39 (22.7) | 8.1 |
CAD | 49 (28.16) | 143 (28.21) | 0.0 | 49 (28.5) | 47 (27.3) | 2.6 |
VT/VF | 33 (18.86) | 150 (29.53) | 25.0 | 33 (19.2) | 52 (30.2) | 25.8 |
AVB | 36 (20.93) | 97 (19.32) | 4.0 | 36 (20.9) | 37 (21.5) | 1.4 |
AF | 24 (13.71) | 119 (23.43) | 25.0 | 24 (14) | 40 (23.3) | 24.1 |
Cardiomyopathy, n (%) | 18.0 | |||||
DCM | 130 (74.29) | 360 (70.87) | 128 (74.4) | 123 (71.5) | 6.6 | |
HCM | 4 (2.29) | 8 (1.57) | 4 (2.3) | 4 (2.3) | 0.0 | |
ARVC | 1 (0.57) | 1 (0.20) | 1 (0.6) | 0 (0) | 9.8 | |
RCM | 4 (2.29) | 26 (5.12) | 4 (2.3) | 5 (2.9) | 3.6 | |
Medication, n (%) | ||||||
ACE/ARB | 146 (83.43) | 415 (81.69) | 5.0 | 143 (83.1) | 141 (82) | 3.1 |
β-blocker | 155 (88.57) | 447 (87.99) | 2.0 | 153 (89) | 152 (88.4) | 1.8 |
Spiro | 165 (94.29) | 427 (84.06) | 33.0 | 162 (94.2) | 151 (87.8) | 22.5 |
Digoxin | 90 (51.43) | 300 (59.06) | 15.0 | 88 (51.2) | 96 (55.8) | 9.3 |
Diuretics | 160 (91.43) | 467 (91.93) | 2.0 | 157 (91.3) | 159 (92.4) | 4.3 |
Statin | 74 (42.29) | 231 (45.47) | 6.0 | 73 (42.4) | 75 (43.6) | 2.4 |
Amiodarone | 21 (12.00) | 97 (19.09) | 20.0 | 20 (11.6) | 32 (18.6) | 19.6 |
Functional class, n (%) | 29.0 | |||||
NYHA I | 2 (1.18) | 6 (1.21) | 2 (1.2) | 2 (1.2) | 0.3 | |
NYHA II | 50 (29.59) | 131 (26.46) | 50 (30.1) | 51 (30) | 0.3 | |
NYHA III | 106 (62.72) | 282 (56.97) | 103 (62) | 88 (51.8) | 20.9 | |
NYHA IV | 11 (6.51) | 76 (15.35) | 11 (6.6) | 29 (17.1) | 32.7 | |
LVEF (<35%), n (%) | 127 (72.57) | 413 (81.30) | 21.0 | 126 (73.3) | 131 (76.2) | 6.7 |
CRT-D, n (%) | 82 (47.13) | 295 (58.07) | 22.0 | 82 (47.7) | 95 (55.2) | 15.2 |
LVEDD, mm | 68.09 ± 9.15 | 70.33 ± 9.94 | 23.0 | 68.01 ± 9.15 | 69.98 ± 10.30 | 20.2 |
BVP proportion, % | 83.26 ± 34.91 | 82.49 ± 35.65 | 2.0 | 84.72 ± 33.41 | 78.12 ± 39.02 | 18.2 |
QRS duration, ms | 167.90 ± 23.78 | 162.98 ± 23.73 | 21.0 | 167.90 ± 23.78 | 160.36 ± 23.32 | 32.0 |
NT-proBNP, pg/mL | 1733.47 ± 1785.99 | 2253.39 ± 2568.71 | 24.0 | 1710.70 ± 1733.10 | 2027.64 ± 2917.72 | 13.2 |
eGFR, mL/min/1.73 m2 | 94.86 ± 39.23 | 101.04 ± 47.07 | 12.0 | 94.73 ± 39.08 | 98.21 ± 51.98 | 7.6 |
Variables | Standard LOH (n = 689) | Prolonged LOH (n = 689) | p Value |
---|---|---|---|
LVEF, (%) | 41.19 ± 10.85 | 38.94 ± 11.71 | 0.001 |
Change in LVEF, (%) | 10.70 ± 11.80 | 9.67 ± 9.59 | 0.126 |
LVEDD, mm | 62.73 ± 10.01 | 64.06 ± 11.65 | 0.049 |
Change in LVEDD, mm | −5.33 ± 8.26 | −6.22 ± 8.32 | 0.086 |
NT-proBNP, pg/mL | 1121.36 ± 1360.37 | 1382.70 ± 1583.36 | 0.006 |
Change in NT-proBNP, pg/mL | −753.00 ± 1408.75 | −728.86 ± 1918.07 | 0.823 |
QRS duration, ms | 144.25 ± 16.96 | 143.55 ± 19.25 | 0.483 |
Change in QRS duration, ms | −25.47 ± 28.24 | −20.76 ± 25.52 | 0.001 |
All-cause death, n (%) | 148 (21.7) | 194 (28.2) | 0.006 |
HF hospitalization, n (%) | 131 (19.8) | 220 (32.3) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Huang, H.; Cheng, S.; Deng, Y.; Cai, C.; Gu, M.; Chen, X.; Niu, H.; Hua, W. Length of Hospitalization-Related Differences and Associated Long-Term Prognosis of Patients with Cardiac Resynchronization Therapy: A Propensity Score-Matched Cohort. J. Cardiovasc. Dev. Dis. 2022, 9, 354. https://doi.org/10.3390/jcdd9100354
Yu Y, Huang H, Cheng S, Deng Y, Cai C, Gu M, Chen X, Niu H, Hua W. Length of Hospitalization-Related Differences and Associated Long-Term Prognosis of Patients with Cardiac Resynchronization Therapy: A Propensity Score-Matched Cohort. Journal of Cardiovascular Development and Disease. 2022; 9(10):354. https://doi.org/10.3390/jcdd9100354
Chicago/Turabian StyleYu, Yu, Hao Huang, Sijing Cheng, Yu Deng, Chi Cai, Min Gu, Xuhua Chen, Hongxia Niu, and Wei Hua. 2022. "Length of Hospitalization-Related Differences and Associated Long-Term Prognosis of Patients with Cardiac Resynchronization Therapy: A Propensity Score-Matched Cohort" Journal of Cardiovascular Development and Disease 9, no. 10: 354. https://doi.org/10.3390/jcdd9100354
APA StyleYu, Y., Huang, H., Cheng, S., Deng, Y., Cai, C., Gu, M., Chen, X., Niu, H., & Hua, W. (2022). Length of Hospitalization-Related Differences and Associated Long-Term Prognosis of Patients with Cardiac Resynchronization Therapy: A Propensity Score-Matched Cohort. Journal of Cardiovascular Development and Disease, 9(10), 354. https://doi.org/10.3390/jcdd9100354