Three-Dimensional Electro-Anatomical Mapping and Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing and Right Ventricular Pacing: The EMPATHY Study
Abstract
:1. Introduction
2. Methods
2.1. Implantation
2.2. Imaging
2.3. Statistics
3. Results
4. Discussion
4.1. Procedural Success
4.2. Three-Dimensional Electro-Anatomic Mapping
4.3. Myocardial Work
4.4. ECG
4.5. Follow-Up
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vijayaraman, P.; Bordachar, P.; Ellenbogen, K.A. The Continued Search for Physiological Pacing: Where Are We Now? J. Am. Coll. Cardiol. 2017, 69, 3099–3114. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Chung, M.K.; Dandamudi, G.; Upadhyay, G.A.; Krishnan, K.; Crossley, G.; Campbell, K.B.; Lee, B.K.; Refaat, M.M.; Saksena, S.; et al. His Bundle Pacing. J. Am. Coll. Cardiol. 2018, 72, 927–947. [Google Scholar] [CrossRef] [PubMed]
- Catanzariti, D.; Maines, M.; Cemin, C.; Broso, G.; Marotta, T.; Vergara, G. Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. J. Interv. Card. Electrophysiol. 2006, 16, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Catanzariti, D.; Maines, M.; Manica, A.; Angheben, C.; Varbaro, A.; Vergara, G. Permanent His-bundle pacing maintains long-term ventricular synchrony and left ventricular performance, unlike conventional right ventricular apical pacing. Europace 2012, 15, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Pastore, G.; Aggio, S.; Baracca, E.; Fraccaro, C.; Picariello, C.; Roncon, L.; Corbucci, G.; Noventa, F.; Zanon, F. Hisian area and right ventricular apical pacing differently affect left atrial function: An intra-patients evaluation. Europace 2014, 16, 1033–1039. [Google Scholar] [CrossRef]
- Pastore, G.; Zanon, F.; Noventa, F.; Baracca, E.; Aggio, S.; Corbucci, G.; Cazzin, R.; Roncon, L.; Barold, S.S. Variability of Left Ventricular Electromechanical Activation during Right Ventricular Pacing: Implications for the Selection of the Optimal Pacing Site. Pacing Clin. Electrophysiol. 2009, 33, 566–574. [Google Scholar] [CrossRef]
- Occhetta, E.; Bortnik, M.; Magnani, A.; Francalacci, G.; Piccinino, C.; Plebani, L.; Marino, P. Prevention of Ventricular Desynchronization by Permanent Para-Hisian Pacing After Atrioventricular Node Ablation in Chronic Atrial Fibrillation. J. Am. Coll. Cardiol. 2006, 47, 1938–1945. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, P.M.; Romanyshyn, M. Direct His-Bundle Pacing: Present and Future. Pacing Clin. Electrophysiol. 2004, 27, 862–870. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Naperkowski, A.; Subzposh, F.A.; Abdelrahman, M.; Sharma, P.S.; Oren, J.W.; Dandamudi, G.; Ellenbogen, K.A. Permanent His-bundle pacing: Long-term lead performance and clinical outcomes. Hear Rhythm. 2018, 15, 696–702. [Google Scholar] [CrossRef]
- Shan, P.; Su, L.; Zhou, X.; Wu, S.; Xu, L.; Xiao, F.; Ellenbogen, K.A.; Huang, W. Beneficial effects of upgrading to His bundle pacing in chronically paced patients with left ventricular ejection fraction. Hear Rhythm. 2018, 15, 405–412. [Google Scholar] [CrossRef]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y.; Auricchio, A.; Barbash, I.M.; Barrabés, J.A.; Boriani, G.; Braunschweig, F.; Brignole, M.; et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef]
- Vijayaraman, P.; Dandamudi, G.; Zanon, F.; Sharma, P.S.; Tung, R.; Huang, W.; Koneru, J.; Tada, H.; Ellenbogen, K.A.; Lustgarten, D.L. Permanent His bundle pacing: Recommendations from a Multicenter His Bundle Pacing Collaborative Working Group for standardization of definitions, implant measurements, and follow-up. Hear Rhythm. 2018, 15, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Malagù, M.; Trevisan, F.; Scalone, A.; Marcantoni, L.; Sammarco, G.; Bertini, M. Frequency of “Pocket” Hematoma in Patients Receiving Vitamin K Antagonist and Antiplatelet Therapy at the Time of Pacemaker or Cardioverter Defibrillator Implantation (from the POCKET Study). Am. J. Cardiol. 2017, 119, 1036–1040. [Google Scholar] [CrossRef]
- Malagù, M.; Vitali, F.; Brieda, A.; Cimaglia, P.; De Raffele, M.; Tazzari, E.; Musolino, C.; Balla, C.; Serenelli, M.; Cultrera, R.; et al. Antibiotic prophylaxis based on individual infective risk stratification in cardiac implantable electronic device: The PRACTICE study. Europace 2022, 24, 413–420. [Google Scholar] [CrossRef]
- Bertini, M.; Mele, D.; Vitali, F.; Balla, C.; Malagù, M. Management of macro-reentrant right atrial tachycardia around multiple leads aided by high-density mapping. Rev. Cardiovasc. Med. 2022, 23, 1. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Tok, Ö.Ö.; Mitrousi, K.; Ikonomidis, I. Myocardial Work: Methodology and Clinical Applications. Diagnostics 2021, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Boe, E.; Skulstad, H.; Smiseth, O.A. Myocardial work by echocardiography: A novel method ready for clinical testing. Eur Hear J. Cardiovasc. Imaging 2019, 20, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure–strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Hear J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef]
- Cabrera, J.; Anderson, R.H.; Macías, Y.; Nevado-Medina, J.; Porta-Sánchez, A.; Rubio, J.M.; Sánchez-Quintana, D. Variable Arrangement of the Atrioventricular Conduction Axis Within the Triangle of Koch: Implications for Permanent His Bundle Pacing. JACC Clin. Electrophysiol. 2020, 6, 362–377. [Google Scholar] [CrossRef]
- Ponnusamy, S.S.; Arora, V.; Namboodiri, N.; Kumar, V.; Kapoor, A.; Vijayaraman, P. Left bundle branch pacing: A comprehensive review. J Cardiovasc. Electrophysiol. 2020, 31, 2462–2473. [Google Scholar] [CrossRef]
- Boe, E.; Russell, K.; Eek, C.; Eriksen, M.; Remme, E.W.; Smiseth, O.A.; Skulstad, H. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome. Eur. Hear J. Cardiovasc. Imaging 2015, 16, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.; Edwards, N.F.A.; Khandheria, B.K.; Shiino, K.; Sabapathy, S.; Anderson, B.; Chamberlain, R.; Scalia, G.M. A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy. Eur. Hear. J. Cardiovasc. Imaging 2019, 20, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Galli, E.; Leclercq, C.; Hubert, A.; Bernard, A.; Smiseth, O.; Mabo, P.; Samset, E.; Hernandez, A.; Donal, E. Role of myocardial constructive work in the identification of responders to CRT. Eur. Hear J. Cardiovasc. Imaging 2018, 19, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hu, C.; Wang, Y.; Cheng, Y.; Zhao, Y.; Liu, Y.; Zheng, S.; Chen, H.; Shu, X. Mechanical Synchrony and Myocardial Work in Heart Failure Patients With Left Bundle Branch Area Pacing and Comparison With Biventricular Pacing. Front. Cardiovasc. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
Overall Population n = 15 | |
---|---|
Age (years) | 76 ± 12 |
Weight (kg) | 79 ± 15 |
BMI (kg/m2) | 26 ± 3 |
BSA (m2) | 1.9 ± 0.4 |
Coronary Artery Disease | 26.7% |
Heart Failure | 33.3% |
Atrial Fibrillation | 53.3% |
Diabetes | 0% |
Hypertension | 80% |
Dyslipidemia | 53.3% |
Smoke history | 46.7% |
COPD | 13.3% |
Cancer history | 40% |
Hemoglobin (g/dL) | 13.0 ± 1.4 |
eGFR, Cockroft–Gault (mL/min) | 66 ± 30 |
ACE inhibitors | 53.3% |
Beta blockers | 53.3% |
Anticoagulants | 60% |
Antiplatelets | 40% |
Ejection fraction (%) | 51 ± 14 |
LV EDVi (mL/m2) | 60 (34–78) |
LAVi (mL/m2) | 41 ± 10 |
RAVi (mL/m2) | 35 ± 13 |
Overall Population n = 15 | |
---|---|
Pacing Indication | |
AV block | 46.7% |
AF with a slow ventricular conduction | 26.7% |
AF undergoing an AV nodal ablation (pace & ablate) | 26.7% |
Atrial lead implanted | 46.7% |
Axillary venous access for the His lead | 100% |
Procedure duration (min) | 130 (120–157) |
Fluoroscopy time (sec) | 780 (529–789) |
DAP (µGym2) | 4442 ± 2981 |
HB lead sensing (mV, n = 12) | 2.3 (1.6–4.6) |
RV lead sensing (mV) | 9.0 (7.9–16.8) |
HB lead impedance (Ohm, n = 12) | 491 ± 107 |
RV lead impedance (Ohm) | 639 ± 111 |
HB lead pacing threshold at 0.4 ms (V, n = 12) | 0.7 (0.4–2.6) |
HB lead pacing threshold at 1.0 ms (V, n = 12) | 0.7 (0.4–1.5) |
RV lead pacing threshold at 0.4 ms (V) | 0.5 (0.5–0.6) |
SVA | HBP | RVP | SVA vs. HPB p | SVA vs. RVP p | HBP vs. RVP p | |
---|---|---|---|---|---|---|
RV activation time (ms) | 103 (92–140) | 104 (95–108) | 133 (120–147) | 0.969 | 0.011 | 0.001 |
QRS duration (ms) | 120 ± 31 | 123 ± 24 | 168 ± 23 | 0.929 | 0.002 | 0.002 |
GLS (%) | −13.5 ± 3.9 | −12.5 ± 4.9 | −9.8 ± 3.9 | 0.286 | 0.004 | 0.012 |
GWI (mmHg%) | 1027 (855–1763) | 1019 (810–2046) | 653 (340–978) | 0.534 | 0.003 | 0.002 |
GCW (mmHg%) | 1648 (1044–2152) | 1505 (1138–2200) | 1191 (941–1711) | 0.075 | 0.011 | 0.008 |
GWW (mmHg%) | 217 (125–249) | 283 (202–360) | 494 (304–674) | 0.016 | 0.004 | 0.004 |
GWE (%) | 87 (80–90) | 82 (73–90) | 71 (63–78) | 0.049 | 0.003 | 0.006 |
Maximum TTP strain difference (ms) | 162 (144–207) | 153 (136–237) | 184 (153–291) | 0.533 | 0.286 | 0.530 |
PSD (ms) | 47 (41–69) | 50 (35–82) | 59 (47–89) | 0.878 | 0.241 | 0.060 |
Population n = 14 | |
---|---|
HB lead sensing (mV, n = 11) | 4.0 (2.5–11.5) |
RV lead sensing (mV) | 11.1 (5.3–15.3) |
HB lead impedance (Ohm, n = 11) | 427 ± 82 |
RV lead impedance (Ohm) | 560 ± 105 |
HB lead pacing threshold (at 1.0 ms, V, n = 11) | 1.5 (0.2–4.6) |
RV lead pacing threshold (at 0.4 ms, V) | 0.7 (0.4–2.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malagù, M.; Vitali, F.; Massafra, R.F.; Cardelli, L.S.; Pavasini, R.; Guardigli, G.; Rapezzi, C.; Bertini, M. Three-Dimensional Electro-Anatomical Mapping and Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing and Right Ventricular Pacing: The EMPATHY Study. J. Cardiovasc. Dev. Dis. 2022, 9, 377. https://doi.org/10.3390/jcdd9110377
Malagù M, Vitali F, Massafra RF, Cardelli LS, Pavasini R, Guardigli G, Rapezzi C, Bertini M. Three-Dimensional Electro-Anatomical Mapping and Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing and Right Ventricular Pacing: The EMPATHY Study. Journal of Cardiovascular Development and Disease. 2022; 9(11):377. https://doi.org/10.3390/jcdd9110377
Chicago/Turabian StyleMalagù, Michele, Francesco Vitali, Rodolfo Francesco Massafra, Laura Sofia Cardelli, Rita Pavasini, Gabriele Guardigli, Claudio Rapezzi, and Matteo Bertini. 2022. "Three-Dimensional Electro-Anatomical Mapping and Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing and Right Ventricular Pacing: The EMPATHY Study" Journal of Cardiovascular Development and Disease 9, no. 11: 377. https://doi.org/10.3390/jcdd9110377
APA StyleMalagù, M., Vitali, F., Massafra, R. F., Cardelli, L. S., Pavasini, R., Guardigli, G., Rapezzi, C., & Bertini, M. (2022). Three-Dimensional Electro-Anatomical Mapping and Myocardial Work Performance during Spontaneous Rhythm, His Bundle Pacing and Right Ventricular Pacing: The EMPATHY Study. Journal of Cardiovascular Development and Disease, 9(11), 377. https://doi.org/10.3390/jcdd9110377