Long-Term Patency of Venous Conduits Targeting the Right Coronary Artery System—Single Is Superior to Sequential bypass Grafting
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Demographics and Clinical Presentation
3.2. Patency Rate of the Venous Bypass Conduit
3.3. Regression Analysis
4. Discussion
5. Conclusions
6. Strength and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | coronary artery |
CABG | coronary artery bypass grafting |
CI | confidence interval |
CTO | chronic total occlusion |
HCM | hypertrophic cardiomyopathy |
HR | hazard ratio |
ICU | intensive care unit |
ITA | internal thoracic artery |
LCA | left coronary artery |
RCA | right coronary artery |
RMD | ramus marginalis dexter |
RPD | right posterior decending |
RPLD | ramus posterolateralis dexter |
References
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Puskas, J.D.; Di Franco, A.; Ohmes, L.B.; Iannaccone, M.; Barbero, U.; Glineur, D.; Grau, J.B.; Benedetto, U.; Taggart, D.P. Three Arterial Grafts Improve Late Survival: A Meta-Analysis of Propensity-Matched Studies. Circulation 2017, 135, 1036–1044. [Google Scholar] [CrossRef]
- Taggart, D.P.; Benedetto, U.; Gerry, S.; Altman, D.G.; Gray, A.M.; Lees, B.; Gaudino, M.; Zamvar, V.; Bochenek, A.; Buxton, B.; et al. Bilateral versus Single Internal-Thoracic-Artery Grafts at 10 Years. N. Engl. J. Med. 2019, 380, 437–446. [Google Scholar] [CrossRef]
- Gaudino, M.; Benedetto, U.; Fremes, S.; Ballman, K.; Biondi-Zoccai, G.; Nasso, G.; Raman, J.; Buxton, B.; Sedrakyan, A.; Hayward, P.A. Association of Radial Artery Graft vs Saphenous Vein Graft With Long-term Cardiovascular Outcomes Among Patients Undergoing Coronary Artery Bypass Grafting: A Systematic Review and Meta-analysis. JAMA 2020, 324, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Schwann, T.A.; Habib, R.H.; Wallace, A.; Shahian, D.M.; O’Brien, S.; Jacobs, J.P.; Puskas, J.D.; Kurlansky, P.A.; Engoren, M.C.; Tranbaugh, R.F.; et al. Operative Outcomes of Multiple-Arterial Versus Single-Arterial Coronary Bypass Grafting. Ann. Thorac. Surg. 2018, 105, 1109–1119. [Google Scholar] [CrossRef]
- Kim, F.Y.; Marhefka, G.; Ruggiero, N.J.; Adams, S.; Whellan, D.J. Saphenous vein graft disease: Review of pathophysiology, prevention, and treatment. Cardiol. Rev. 2013, 21, 101–109. [Google Scholar] [CrossRef]
- De Vries, M.R.; Quax, P.H.A. Inflammation in Vein Graft Disease. Front. Cardiovasc. Med. 2018, 5, 3. [Google Scholar] [CrossRef]
- Caliskan, E.; de Souza, D.R.; Böning, A.; Liakopoulos, O.J.; Choi, Y.-H.; Pepper, J.; Gibson, C.M.; Perrault, L.P.; Wolf, R.K.; Kim, K.-B.; et al. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat. Rev. Cardiol. 2020, 17, 155–169. [Google Scholar] [CrossRef]
- Goldman, S.; Zadina, K.; Moritz, T.; Ovitt, T.; Sethi, G.; Copeland, J.G.; Thottapurathu, L.; Krasnicka, B.; Ellis, N.; Anderson, R.J.; et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: Results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 2004, 44, 2149–2156. [Google Scholar] [CrossRef]
- Ruttmann, E.; Dietl, M.; Feuchtner, G.M.; Metzler, B.; Bonaros, N.; Taggart, D.P.; Gaudino, M.; Ulmer, H.; Benedetto, U.; Buxton, B.; et al. Long-term clinical outcome and graft patency of radial artery and saphenous vein grafts in multiple arterial revascularization. J. Thorac. Cardiovasc. Surg. 2019, 158, 442–450. [Google Scholar] [CrossRef] [PubMed]
- FitzGibbon, G.M.; Leach, A.J.; Kafka, H.P.; Keon, W.J. Coronary bypass graft fate: Long-term angiographic study. J. Am. Coll. Cardiol. 1991, 17, 1075–1080. [Google Scholar] [CrossRef]
- Mehta, R.H.; Ferguson, T.B.; Lopes, R.D.; Hafley, G.E.; Mack, M.J.; Kouchoukos, N.T.; Gibson, C.M.; Harrington, R.A.; Califf, R.M.; Alexander, J.H. Saphenous vein grafts with multiple versus single distal targets in patients undergoing coronary artery bypass surgery: One-year graft failure and five-year outcomes from the Project of Ex-Vivo Vein Graft Engineering via Transfection (PREVENT) IV trial. Circulation 2011, 124, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Zheng, J.; Bai, T.; Liu, Y.; Wang, X.; Liu, N.; Cheng, L.; Chen, Y.; Zhang, H. The Patency of Sequential and Individual Vein Coronary Bypass Grafts: A Systematic Review. Ann. Thorac. Surg. 2011, 92, 1292–1298. [Google Scholar] [CrossRef]
- Pinho-Gomes, A.-C.; Azevedo, L.; Antoniades, C.; Taggart, D.P. Comparison of graft patency following coronary artery bypass grafting in the left versus the right coronary artery systems: A systematic review and meta-analysis. Eur. J. Cardio-Thorac. Surg. 2018, 54, 221–228. [Google Scholar] [CrossRef]
- Sabik, J.F., 3rd; Lytle, B.W.; Blackstone, E.H.; Khan, M.; Houghtaling, P.L.; Cosgrove, D.M. Does competitive flow reduce internal thoracic artery graft patency? Ann. Thorac. Surg. 2003, 76, 1490–1496. [Google Scholar] [CrossRef]
- Sabik, J.F., 3rd; Blackstone, E.H.; Houghtaling, P.L.; Cosgrove, D.M. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann. Thorac. Surg. 2005, 79, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fu, C.; Zhang, L.-X.; Zhang, G.-D.; Chen, Y. Perioperative observations of different bypass modes of a right coronary system based on instantaneous blood flow during the operation. J. Cardiothorac. Surg. 2020, 15, 217. [Google Scholar] [CrossRef] [PubMed]
- Nordgaard, H.; Vitale, N.; Haaverstad, R. Transit-Time Blood Flow Measurements in Sequential Saphenous Coronary Artery Bypass Grafts. Ann. Thorac. Surg. 2009, 87, 1409–1415. [Google Scholar] [CrossRef]
- Aksut, M.; Koksal, C.; Kocamaz, O.; Aksoy, E.; Kara, I.; Onk, A.; Ozkaynak, B. Should right coronary bypass grafts be anastomosed proximal or distal to the crux? A comparison of graft patencies. Ann. Thorac. Cardiovasc. Surg. 2012, 18, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Marcus, M.; Wright, C.; Doty, D.; Eastham, C.; Laughlin, D.; Krumm, P.; Fastenow, C.; Brody, M. Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ. Res. 1981, 49, 877–891. [Google Scholar] [CrossRef] [PubMed]
- Moshkovitz, Y.; Raanani, E. The art of saphenous vein grafting and patency maintenance. J. Thorac. Cardiovasc. Surg. 2016, 151, 300–302. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, M.; Benedetto, U.; Fremes, S.; Biondi-Zoccai, G.; Sedrakyan, A.; Puskas, J.D.; Angelini, G.D.; Buxton, B.; Frati, G.; Hare, D.L.; et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N. Engl. J. Med. 2018, 378, 2069–2077. [Google Scholar] [CrossRef]
- Cao, C.; Ang, S.C.; Wolak, K.; Peeceeyen, S.; Bannon, P.; Yan, T.D. A meta-analysis of randomized controlled trials on mid-term angiographic outcomes for radial artery versus saphenous vein in coronary artery bypass graft surgery. Ann. Cardiothorac. Surg. 2013, 2, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Hadinata, I.E.; Hayward, P.A.; Hare, D.; Matalanis, G.S.; Seevanayagam, S.; Rosalion, A.; Buxton, B.F. Choice of Conduit for the Right Coronary System: 8-Year Analysis of Radial Artery Patency and Clinical Outcomes Trial. Ann. Thorac. Surg. 2009, 88, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.Y.; Hayward, P.A.; Fuller, J.A.; Tatoulis, J.; Rosalion, A.; Newcomb, A.E.; Buxton, B.F. Is the radial artery associated with improved survival in older patients undergoing coronary artery bypass grafting? An analysis of a multicentre experiencedagger. Eur. J. Cardiothorac. Surg. 2016, 49, 196–202. [Google Scholar] [CrossRef]
- Glineur, D.; D’Hoore, W.; de Kerchove, L.; Noirhomme, P.; Price, J.; Hanet, C.; El Khoury, G. Angiographic predictors of 3-year patency of bypass grafts implanted on the right coronary artery system: A prospective randomized comparison of gastroepiploic artery, saphenous vein, and right internal thoracic artery grafts. J. Thorac. Cardiovasc. Surg. 2011, 142, 980–988. [Google Scholar] [CrossRef]
- Velazquez, E.J.; Lee, K.L.; Jones, R.H.; Al-Khalidi, H.R.; Hill, J.A.; Panza, J.A.; Michler, R.E.; Bonow, R.O.; Doenst, T.; Petrie, M.C.; et al. Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy. N. Engl. J. Med. 2016, 374, 1511–1520. [Google Scholar] [CrossRef]
- Arif, R.; Farag, M.; Gertner, V.; Szabó, G.; Weymann, A.; Veres, G.; Ruhparwar, A.; Bekeredjian, R.; Bruckner, T.; Karck, M. Female Gender and Differences in Outcome after Isolated Coronary Artery Bypass Graft Surgery: Does Age Play a Role? PLoS ONE 2016, 11, e0145371. [Google Scholar]
- Raza, S.; Blackstone, E.H.; Houghtaling, P.L.; Rajeswaran, J.; Riaz, H.; Bakaeen, F.G.; Lincoff, A.M.; Sabik, J.F. Influence of Diabetes on Long-Term Coronary Artery Bypass Graft Patency. J. Am. Coll. Cardiol. 2017, 70, 515–524. [Google Scholar] [CrossRef]
- Fumagalli, S.; Pieragnoli, P.; Haugaa, K.H.; Potpara, T.S.; Rasero, L.; Ramacciati, N.; Ricciardi, G.; Solimene, F.; Mascia, G.; Mascioli, G.; et al. The influence of age on the psychological profile of patients with cardiac implantable electronic devices: Results from the Italian population in a multicenter study conducted by the European Heart Rhythm Association. Aging 2019, 31, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Al-Dadah, A.S.; Voeller, R.K.; Rahgozar, P.; Lawton, J.S.; Moon, M.R.; Pasque, M.K.; Damiano, R.J.; Moazami, N. Implantable cardioverter-defibrillators improve survival after coronary artery bypass grafting in patients with severely impaired left ventricular function. J. Cardiothorac. Surg. 2007, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, H.; Tang, B.; Zhu, C.; Meng, L.; Yu, Q.; Huang, X.; Wu, R.; Wang, S. Mid-term outcomes of simultaneous coronary artery bypass graft surgery and septal myectomy in patients with hypertrophic obstructive cardiomyopathy: A case-controlled study. J. Card. Surg. 2019, 34, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Mascia, G.; Crotti, L.; Groppelli, A.; Canepa, M.; Merlo, A.C.; Benenati, S.; Di Donna, P.; Della Bona, R.; Soranna, D.; Zambon, A.; et al. Syncope in hypertrophic cardiomyopathy (part I): An updated systematic review and meta-analysis. Int. J. Cardiol. 2022, 357, 88–94. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | Total (n = 1106) | Sequential Graft (n = 289) | Single Graft (n = 798) | p-Value |
---|---|---|---|---|
Age in years, mean (SD), median (IQR) | 63.72 (9.90) 64 (57–71) | 66.27 (10.34) 68 (59–74) | 62.83 (9.57) 63 (57–70) | <0.001 |
Female, n (%) | 188 (17%) | 46 (15.9%) | 139 (17.4%) | 0.555 |
BMI, mean (SD), median (IQR) | 27.25 (5.75) 27 (25–29) missing: 8 | 27.9 (8.97) 27 (25–29) missing: 1 | 27.01 (4.03) 27 (24–29) missing: 7 | 0.082 |
euroSCORE (logistic), median (IQR) | 6.05 (3.14–10.43) missing: 332 | 7.21 (3.90–11.76) missing: 33 | 5.52 (2.87–9.58) missing: 294 | 0.018 |
NYHA III-IV, n (%) | 830 (75.3%) missing: 4 | 221 (76.5%) | 594 (74.4%) missing: 4 | 0.572 |
Diabetes, n (%) | 350 (31.8%) missing: 7 | 106 (36.7%) | 240 (30.3%) missing: 7 | 0.054 |
Smoking, n (%) | 513 (51.0%) missing: 100 | 136 (50.2%) missing: 18 | 368 (51.3%) missing: 80 | 0.765 |
COPD, n (%) | 176 (16.1%) missing: 11 | 66 (23.0%) missing: 2 | 107 (13.6%) missing: 9 | <0.001 |
Atrial Fibrillation, n (%) | 84 (7.6%) missing: 1 | 37 (12.8%) missing: 1 | 46 (5.8%) | 0.001 |
Unstable Angina, n (%) | 381 (34.8%) missing: 10 | 91 (31.6%) missing: 1 | 283 (35.9%) missing: 9 | 0.187 |
Previous MI, n (%) | 563 (50.9%) | 137 (47.4%) | 417 (52.3%) | 0.211 |
Decompensation, n (%) | 68 (6.1%) | 20 (6.9%) | 46 (5.8%) | 0.752 |
Hyperlipidemia, n (%) | 894 (82.2%) missing: 18 | 244 (84.4%) | 634 (81.3%) missing: 18 | 0.218 |
Previous cardiothoracic operation, n (%) | 39 (3.5%) | 8 (2.8%) | 31 (3.9%) | 0.346 |
Dialysis/KT/ARF, n (%) | 27 (2.4%) missing: 3 | 13 (4.5%) | 13 (1.6%) missing: 3 | 0.028 |
Severely impaired LV-Function, n (%) | 104 (10.8%) missing: 145 | 44 (15.2%) missing: 9 | 55 (8.3%) missing: 136 | 0.002 |
Moderately + severely impaired LV-Function, n (%) | 358 (37.3%) missing: 145 | 135 (48.2%) missing: 9 | 212 (32.0%) missing: 136 | <0.001 |
Previous PCI, n (%) | 388 (35.1%) missing: 1 | 117 (40.5%) | 265 (33.2%) missing: 1 | 0.031 |
Emergency/Urgent indication | 426 (38.5%) | 94 (32.5%) | 328 (41.1%) | 0.014 |
Characteristics | Total (n = 1106) | Sequential Graft (n = 289) | Single Graft (n = 798) | p-Value |
---|---|---|---|---|
Total n grafts, mean (SD) | 2.81 (0.65) | 2.41 (0.66) | 2.95 (0.59) | <0.001 |
CTO, n (%) | 174 (20.5%) missing: 259 | 52 (21.8%) missing: 50 | 119 (20.1%) missing: 206 | 0.598 |
Visible collateralization, n (%) | 95 (11.8%) missing: 301 | 28 (12.4%) missing: 63 | 66 (11.7%) missing: 234 | 0.790 |
Preoperative main RCA stenosis | missing: 386 | missing: 90 | missing: 292 | |
0%, n (%) | 2 (0.3%) | 1 (0.5%) | 1 (0.2%) | 0.494 |
25%, n (%) | 7 (1.0%) | 1 (0.5%) | 6 (1.2%) | 0.411 |
50%, n (%) | 48 (6.7%) | 11 (5.5%) | 36 (7.1%) | 0.448 |
75%, n (%) | 196 (27.2%) | 53 (26.6%) | 138 (27.3%) | 0.864 |
90–95%, n (%) | 226 (31.4%) | 64 (32.2%) | 157 (31.0%) | 0.771 |
99%, n (%) | 76 (10.6%) | 19 (9.5%) | 56 (11.1%) | 0.557 |
100%, n (%) | 165 (22.9%) | 50 (25.1%) | 112 (22.1%) | 0.396 |
Graft flow | missing: 291 | missing: 104 | missing: 187 | |
Mean graft flow, mL/min ± SD | 64.89 ± 35.67 | 75.87 ± 39.60 | 61.42 ± 33.78 | <0.001 |
Range graft flow, mL/min | 6–340 | 12–340 | 6–270 | |
Total low graft flow < 20 mL/min, n (%) | 54 (6.6%) | 5 (2.6%) | 49 (8.0%) | 0.002 |
Outcome at follow-up | ||||
Overall graft occlusion during follow-up, n (%) | 368 (33.3%) | 101 (34.9%) | 260 (32.6%) | 0.682 |
Graft occlusion of CTO, n (%) | 69 (39.7%) | 20 (38.5%) | 47 (39.5%) | 0.899 |
Occlusion of native RCA in follow-up angiogram, n (%) | 785 (71%) | 171 (59.2%) | 604 (75.7%) | <0.001 |
Patency rates, censored | ||||
1-year, % ± SD | 96.5 ± 0.6% | 94.2 ± 1.4% | 97.1 ± 0.6% | <0.001 |
5-year, % ± SD | 87.4 ± 1.1% | 76.9 ± 2.8% | 90.4 ± 1.1% | <0.001 |
10-year, % ± SD | 73.4 ± 1.6% | 54.8 ± 4.2% | 77.8 ± 1.7% | <0.001 |
median survival in years (SD) | 14.39 (1.78) | 17.01 (0.58) | <0.001 | |
Intervention native RCA, n (%) | 174 (15.8%) | 55 (19.0%) | 117 (14.7%) | 0.125 |
Intervention bypass graft, n (%) | 130 (11.8%) | 22 (7.6%) | 107 (13.4%) | 0.006 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Variable | p-Value | HR | 95% CI | p-Value | HR | 95% CI |
Urgency | 0.008 | 1.281 | 1.067–1.538 | 0.003 | 1.355 | 1.108–1.656 |
CTO | 0.166 | 1.213 | 0.923–1.594 | |||
Visible collateralization | 0.123 | 1.316 | 0.929–1.864 | |||
Single grafting | <0.001 | 0.567 | 0.450–0.715 | <0.001 | 0.575 | 0.449–0.737 |
Age | <0.001 | 1.024 | 1.013–1.036 | 0.002 | 1.019 | 1.007–1.032 |
Gender | 0.462 | 1.109 | 0.842–1.461 | |||
BMI | 0.036 | 1.013 | 1.001–1.024 | 0.166 | 1.008 | 0.997–1.020 |
euroSCORE (logistic) | 0.159 | 1.010 | 0.996–1.024 | |||
Unstable Angina | 0.054 | 0.807 | 0.649–1.004 | |||
Previous MI | 0.850 | 0.989 | 0.877–1.114 | |||
NYHA | 0.432 | 1.099 | 0.869–1.390 | |||
Diabetes | 0.128 | 1.190 | 0.952–1.487 | |||
Hyperlipidemia | 0.445 | 1.109 | 0.851–1.444 | |||
Smoking | 0.298 | 1.122 | 0.903–1.395 | |||
Previous cardiothoracic operation | 0.050 | 0.562 | 0.316–1.001 | |||
COPD | 0.142 | 1.251 | 0.928–1.687 | |||
Dialysis/KT/ARF | 0.393 | 1.425 | 0.633–3.206 | |||
Creatinine | 0.478 | 0.944 | 0.805–1.107 | |||
Atrial Fibrillation | 0.020 | 1.729 | 1.091–2.739 | 0.428 | 1.216 | 0.750–1.974 |
Severely impaired LV-Function, | <0.001 | 1.931 | 1.331–2.803 | 0.001 | 1.883 | 1.290–2.748 |
Previous PTCA | 0.678 | 1.047 | 0.842–1.302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arif, R.; Warninck, A.; Farag, M.; Sommer, W.; Leuschner, F.; Frey, N.; Karck, M.; Warnecke, G.; Geis, N.A. Long-Term Patency of Venous Conduits Targeting the Right Coronary Artery System—Single Is Superior to Sequential bypass Grafting. J. Cardiovasc. Dev. Dis. 2022, 9, 285. https://doi.org/10.3390/jcdd9090285
Arif R, Warninck A, Farag M, Sommer W, Leuschner F, Frey N, Karck M, Warnecke G, Geis NA. Long-Term Patency of Venous Conduits Targeting the Right Coronary Artery System—Single Is Superior to Sequential bypass Grafting. Journal of Cardiovascular Development and Disease. 2022; 9(9):285. https://doi.org/10.3390/jcdd9090285
Chicago/Turabian StyleArif, Rawa, Aglaia Warninck, Mina Farag, Wiebke Sommer, Florian Leuschner, Norbert Frey, Matthias Karck, Gregor Warnecke, and Nicolas A. Geis. 2022. "Long-Term Patency of Venous Conduits Targeting the Right Coronary Artery System—Single Is Superior to Sequential bypass Grafting" Journal of Cardiovascular Development and Disease 9, no. 9: 285. https://doi.org/10.3390/jcdd9090285