Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Different Treatments on Physicochemical Properties of Complex Protein Solutions
2.1.1. Solubility
2.1.2. Surface Hydrophobicity
2.2. Effects of Different Treatments on the Properties of Composite Protein Gels
2.2.1. Textural Properties
2.2.2. Water Retention and Moisture Distribution
2.2.3. Microscopic Morphology
2.3. Effects of Different Treatments on the Effect of Composite Protein Gels Loaded with Curcumin
2.4. Release Properties of Gels
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Pea Isolate Protein–Corn Alcohol-Soluble Protein Complex Stock Solution
4.3. Protein Solution Preparation for Different Treatments
4.4. Physicochemical Properties of Complex Proteins
4.4.1. Solubility
4.4.2. Surface Hydrophobicity
4.5. Composite Protein Gel Preparation with Different Induction Modes
4.6. Gel Performance Test
4.6.1. Textural Properties
4.6.2. Water Retention and Moisture Distribution
4.6.3. Microscopic Morphology
4.7. Preparation of Curcumin-Loaded Gels
4.8. Load Efficiency and Load Capacity of Gels
4.9. Digestive Release of Composite Gels
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nasrabadi, M.N.; Doost, A.S.; Mezzenga, R. Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; Vahedikia, N.; Miao, S. Evaluation on pH-dependent thermal gelation performance of chickpea, pea protein, and casein micelles. Food Hydrocoll. 2024, 149, 109618. [Google Scholar] [CrossRef]
- Hadidi, M.; Boostani, S.; Jafari, S.M. Pea proteins as emerging biopolymers for the emulsification and encapsulation of food bioactives. Food Hydrocoll. 2022, 126, 107474. [Google Scholar] [CrossRef]
- Jiang, S.; Ding, J.; Andrade, J.; Rababah, T.M.; Almajwal, A.; Abulmeaty, M.M.; Feng, H. Modifying the physicochemical properties of pea protein by pH-shifting and ultrasound combined treatments. Ultrason. Sonochemistry 2017, 38, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.; Cachon, R.; Cayot, N. Pisum sativum vs Glycine max, a comparative review of nutritional, physicochemical, and sensory properties for food uses. Trends Food Sci. Technol. 2020, 95, 196–204. [Google Scholar] [CrossRef]
- Molfetta, M.; Morais, E.G.; Barreira, L.; Bruno, G.L.; Porcelli, F.; Dugat-Bony, E.; Bonnarme, P.; Minervini, F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.M.; Knoerzer, K.; Arcot, J. Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier Transform Infrared Spectroscopy (FTIR). J. Food Eng. 2017, 214, 166–174. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, W.; Feizollahi, E.; Roopesh, M.S.; Chen, L. Improvement of pea protein gelation at reduced temperature by atmospheric cold plasma and the gelling mechanism study. Innov. Food Sci. Emerg. Technol. 2021, 67, 102567. [Google Scholar] [CrossRef]
- Giteru, S.G.; Ali, M.A.; Oye, I. Recent progress in understanding fundamental interactions and applications of zein. Food Hydrocoll. 2021, 120, 106948. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, X.; Yin, H.; Li, Q.; Zhou, J.; Zhang, H.; Zhang, W.; Zhao, C.; Liu, J. Preparation and characterisation of curcumin-loaded pea protein-zein nanocomplexes using pH-driven method. Int. J. Food Sci. Technol. 2022, 57, 3589–3603. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, T.; He, F.; Chen, G. Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms. Int. J. Biol. Macromol. 2021, 168, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Han, Y.; Sun, C.; Dai, L.; Yang, S.; Wei, Y.; Mao, L.; Yuan, F.; Gao, Y. Effect of molecular weight of hyaluronan on zein-based nanoparticles: Fabrication, structural characterization and delivery of curcumin. Carbohydr. Polym. 2018, 201, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Ma, M.; Zhang, S.; Liu, C.; Chen, P.; Li, H.; Wang, D.; Xu, Y. Effect of sophorolipid on the curcumin-loaded ternary composite nanoparticles self-assembled from zein and chondroitin sulfate. Food Hydrocoll. 2021, 113, 106493. [Google Scholar] [CrossRef]
- Johansson, M.; Karkehabadi, S.; Johansson, D.P.; Langton, M. Gelation behaviour and gel properties of the 7S and 11S globulin protein fractions from faba bean (Vicia faba var. minor) at different NaCl concentrations. Food Hydrocoll. 2023, 142, 108789. [Google Scholar] [CrossRef]
- Lavoisier, A.; Aguilera, J.M. Starch gelatinization inside a whey protein gel formed by cold gelation. J. Food Eng. 2019, 256, 18–27. [Google Scholar] [CrossRef]
- Wong, D.; Vasanthan, T.; Ozimek, L. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins. Food Chem. 2013, 141, 3913–3919. [Google Scholar] [CrossRef]
- Grygorczyk, A.; Duizer, L.; Lesschaeve, I.; Corredig, M. Gelation of recombined soymilk and cow's milk gels: Effect of homogenization order and mode of gelation on microstructure and texture of the final matrix. Food Hydrocoll. 2014, 35, 69–77. [Google Scholar] [CrossRef]
- Maltais, A.; Remondetto, G.E.; Subirade, M. Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food Hydrocoll. 2009, 23, 1647–1653. [Google Scholar] [CrossRef]
- Ferry; John, D. Advances in Protein Chemistry. Protein Gels 1948, 4, 1–78. [Google Scholar]
- Zhu, J.; Deng, H.; Yang, A.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct. 2019, 10, 5485–5497. [Google Scholar] [CrossRef]
- Tang, C.-H.; Wu, H.; Chen, Z.; Yang, X.-Q. Formation and properties of glycinin-rich and β-conglycinin-rich soy protein isolate gels induced by microbial transglutaminase. Food Res. Int. 2006, 39, 87–97. [Google Scholar] [CrossRef]
- Mizuno, A.; Mitsuiki, M.; Motoki, M. Effect of Transglutaminase Treatment on the Glass Transition of Soy Protein. J. Agric. Food Chem. 2000, 48, 3286–3291. [Google Scholar] [CrossRef] [PubMed]
- Yasir, S.; Sutton, K.; Newberry, M.; Andrews, N.; Gerrard, J. The impact of Maillard cross-linking on soy proteins and tofu texture. Food Chem. 2007, 104, 1502–1508. [Google Scholar] [CrossRef]
- Agyare, K.; Xiong, Y.; Addo, K. Influence of salt and pH on the solubility and structural characteristics of transglutaminase-treated wheat gluten hydrolysate. Food Chem. 2007, 107, 1131–1137. [Google Scholar] [CrossRef]
- Qin, X.S.; Luo, S.Z.; Cai, J.; Zhong, X.Y.; Jiang, S.T.; Zheng, Z.; Zhao, Y.Y. Effects of microwave pretreatment and transglutaminase crosslinking on the gelation properties of soybean protein isolate and wheat gluten mixtures. J. Sci. Food Agric. 2016, 96, 3559–3566. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.; Rosebrough, N.; Farr, A.L.; Randall, R. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Basse, B.; Bosc, V.; Saiter, J.-M.; Chan-Huot, M.; Dupas, J.-P.; Maillard, M.-N.; Menut, P. Combined effects of ionic strength and enzymatic pre-treatment in thermal gelation of peanut proteins extracts. Food Res. Int. 2020, 137, 109362. [Google Scholar] [CrossRef]
- Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochemistry 2011, 18, 951–957. [Google Scholar] [CrossRef]
- Salvador, P.; Toldrà, M.; Saguer, E.; Carretero, C.; Parés, D. Microstructure–function relationships of heat-induced gels of porcine haemoglobin. Food Hydrocoll. 2009, 23, 1654–1659. [Google Scholar] [CrossRef]
- Campbell, L.J.; Gu, X.; Dewar, S.J.; Euston, S.R. Effects of heat treatment and glucono-δ-lactone-induced acidification on characteristics of soy protein isolate. Food Hydrocoll. 2009, 23, 344–351. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Chang, C.; Gu, L.; Peng, N.; Su, Y.; Yang, Y. Molecular forces and gelling properties of heat-set whole chicken egg protein gel as affected by NaCl or pH. Food Chem. 2018, 261, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Yin, H.; Yan, J.; Niu, X.; Qi, B.; Liu, J. Structure and acid-induced gelation properties of soy protein isolate–maltodextrin glycation conjugates with ultrasonic pretreatment. Food Hydrocoll. 2021, 112, 106278. [Google Scholar] [CrossRef]
- Zhao, Y.; Han, X.; Hu, N.; Zhao, C.; Wu, Y.; Liu, J. Study on properties of TGase-induced pea protein–zein complex gels. J. Food Eng. 2023, 354, 111578. [Google Scholar] [CrossRef]
- Jiang, S.; Yildiz, G.; Ding, J.; Andrade, J.; Rababahb, T.M.; Almajwalc, A.; Abulmeatyc, M.M.; Feng, H. Pea Protein Nanoemulsion and Nanocomplex as Carriers for Protection of Cholecalciferol (Vitamin D3). Food Bioprocess Technol. 2019, 12, 1031–1040. [Google Scholar] [CrossRef]
H-PP-C | H-PZ-C | TG-PP-C | TG-PZ-C | HTG-PP-C | HTG-PZ-C | |
---|---|---|---|---|---|---|
LE (%) | 79.63 ± 1.17 b | 65.12 ± 1.46 c | 85.69 ± 1.97 a | 84.27 ± 1.45 a | 86.32 ± 1.16 a | 85.92 ± 1.77 a |
LC (%) | 7.96 ± 0.12 b | 6.51 ± 0.15 c | 8.57 ± 0.20 a | 8.43 ± 0.15 a | 8.63 ± 0.12 a | 8.59 ± 0.18 a |
15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 | 150 | 165 | 180 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
H-PP-C | 4.35 a | 16.26 a | 27.05 a | 39.62 a | 48.67 a | 55.41 a | 62.89 a | 66.94 a | 69.02 a | 70.48 a | 71.53 a | 71.56 c |
H-PZ-C | 4.17 a | 12.18 b | 24.07 b | 36.14 b | 44.31 b | 51.63 b | 58.44 b | 63.06 b | 65.18 b | 66.39 b | 67.47 c | 68.43 d |
TG-PP-C | 1.32 b | 8.66 c | 13.18 c | 25.37 c | 32.92 c | 39.55 c | 45.47 c | 51.06 c | 58.27 c | 64.35 bc | 69.73 bc | 74.42 bc |
TG-PZ-C | 1.58 b | 4.02 d | 9.39 d | 18.56 e | 23.06 d | 27.17 e | 33.91 e | 41.05 e | 48.73 e | 58.04 c | 67.04 c | 74.58 bc |
HTG-PP-C | 1.42 b | 7.31 c | 14.28 c | 21.69 d | 26.09 d | 31.83 d | 38.27 d | 45.14 d | 52.61 d | 61.37 c | 68.52 bc | 74.09 c |
HTG-PZ-C | 1.86 b | 3.17 d | 7.52 d | 12.43 f | 19.26 e | 23.33 f | 26.53 f | 38.19 e | 43.55 f | 52.07 d | 63.49 d | 77.33 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, C.; Hu, N.; Zhao, Y.; Wu, Y.; Liu, J.; Zhao, Y. Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties. Gels 2024, 10, 301. https://doi.org/10.3390/gels10050301
Li Y, Wang C, Hu N, Zhao Y, Wu Y, Liu J, Zhao Y. Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties. Gels. 2024; 10(5):301. https://doi.org/10.3390/gels10050301
Chicago/Turabian StyleLi, Yan, Chi Wang, Nannan Hu, Yuanhui Zhao, Yuzhu Wu, Jingsheng Liu, and Yilin Zhao. 2024. "Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties" Gels 10, no. 5: 301. https://doi.org/10.3390/gels10050301
APA StyleLi, Y., Wang, C., Hu, N., Zhao, Y., Wu, Y., Liu, J., & Zhao, Y. (2024). Effect of Heat Treatment Combined with TG Enzyme Cross-Linking on the Zein–Pea Protein Complex: Physicochemical and Gel Properties. Gels, 10(5), 301. https://doi.org/10.3390/gels10050301