Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds
Abstract
:1. Introduction
- Gelation of a solution of colloidal powders;
- Hydrolysis and poly-condensation of alkoxide precursors followed by hypercritical drying of the gels;
- Hydrolysis and poly-condensation of alkoxide or chloride precursors followed by aging and drying in ambient atmospheres.
(M = metal, e.g., Ti, Zr, Al, R = alkyl residues)
2. Cation Adsorption/Separation
ΔG0 = −14.6 kcal/mol
2.1. Electron Exchange Columns
- Oxidizing electron exchange columns by entrapping NiII(cyclam)2+ in a sol–gel matrix [20] or by covalently binding NiII(cyclam)2+ to a porous silica nanoparticle [85]. Transition metal complexes with high and low oxidation states are suitable redox active agents for heterogeneous electron exchange applications. The rational design of the ligand, i.e., altering the ligand structure to manipulate the redox potentials of the complexes, enables uncommon oxidation states of the metal to be stabilized. Both matrices were oxidized by S2O82− and then shown to oxidize reducing agents. The lifetime of the NiIII(cyclam)3+ oxidizing agent formed in these systems is considerably longer than in homogeneous media due to the inhibition of the reaction between two NiIII(cyclam)3+ complexes [85].
- Reducing electron exchange columns by entrapping polyoxometalates (POMs). In recent years, POMs have attracted significant attention due to their alterable physical and chemical properties [86,87,88,89,90,91]. Moreover, they are known for their flexible redox behavior, which can be fine-tuned during the synthesis process by changing their composition [92,93,94]. The oxidized forms of POMs can accept electrons, whereas their reduced forms can function as the donors and the acceptors of several electrons while retaining their structures [92,95,96,97]. This property renders POMs ideal candidates for electron exchange applications [93,98,99,100]. Matrices prepared by the entrapment of PW12O403− and AlW12O45− in silica or organically modified silica by using the sol–gel procedure were used as reducing electron exchange columns [98,101]. The entrapped polyoxometalates were reduced by sodium borohydride, and the reduced product was shown to reduce halo-organic compounds [101] and bromate [102]. NMR studies proved that the polyoxometalates were bound covalently to the sol–gel matrix via a mechanism analogous to reaction (2). Also, the average number of electrons loaded on each silica-entrapped POM, n, was considerably smaller than that observed in experiments performed with POM dissolved in solution. Moreover, it depends strongly on the nature of the precursors. Higher values of n were obtained when matrices were more hydrophilic and prepared only from TEOS [17].
2.2. Electrocatalytic Processes by Entrapped/Adsorbed Species in Sol–Gel Matrices
2.3. M0-NPs as Catalysts for Reduction Processes of Halo-Organic and Nitroaromatic Pollutants
2.4. The Effect of Porous SiO2 on Catalytic Hydrogen Evolution Processes Induced by M0-NPs
2.5. Formation of ≡Si-O. Radicals on Porous Silica Surfaces
ΔG° (pH 0) = 5.74 kcal/mol, ΔG° (pH 2) = 3.01 kcal/mol,
ΔG° (pH 7) = −3.81 kcal/mol, ΔG° (pH 13) = −12.01 kcal/mol
3. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Warren, S.C.; Perkins, M.R.; Adams, A.M.; Kamperman, M.; Burns, A.A.; Arora, H.; Herz, E.; Suteewong, T.; Sai, H.; Li, Z.; et al. A Silica Sol–Gel Design Strategy for Nanostructured Metallic Materials. Nat. Mater. 2012, 11, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Cohen, N.; Shamir, D.; Kornweitz, H.; Albo, Y.; Burg, A. Dual Role of Silicon-based Matrices in Electron Exchange Matrices for Waste Treatment. ChemPhysChem 2023, 24, e202300130. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, J. Sol-Gel Materials for the Solid Phase Extraction of Metals from Aqueous Solution. Talanta 2000, 52, 801–806. [Google Scholar] [CrossRef]
- Singh, H.; Sunaina; Yadav, K.K.; Bajpai, V.K.; Jha, M. Tuning the Bandgap of M-ZrO2 by Incorporation of Copper Nanoparticles into Visible Region for the Treatment of Organic Pollutants. Mater. Res. Bull. 2020, 123, 110698. [Google Scholar] [CrossRef]
- Sood, P.; Krishankant; Bagdwal, H.; Joshi, A.; Yadav, K.K.; Bera, C.; Singh, M. Polyoxometalate-Derived Cu-MoO2 Nanosheets as Electrocatalysts for Enhanced Acidic Water Oxidation. ACS Appl. Nano Mater. 2024, 7, 69–76. [Google Scholar] [CrossRef]
- Rex, A.; dos Santos, J.H.Z. The Use of Sol–Gel Processes in the Development of Supported Catalysts. J. Solgel Sci. Technol. 2023, 105, 30–49. [Google Scholar] [CrossRef]
- Rolly, G.S.; Sermiagin, A.; Meyerstein, D.; Zidki, T. Silica Support Affects the Catalytic Hydrogen Evolution by Silver. Eur. J. Inorg. Chem. 2021, 2021, 3054–3058. [Google Scholar] [CrossRef]
- Esposito, S. “Traditional” Sol-Gel Chemistry as a Powerful Tool for the Preparation of Supported Metal and Metal Oxide Catalysts. Materials 2019, 12, 668. [Google Scholar] [CrossRef]
- Lu, Z.; Lindner, E.; Mayer, H.A. Applications of Sol−Gel-Processed Interphase Catalysts. Chem. Rev. 2002, 102, 3543–3578. [Google Scholar] [CrossRef]
- Vasudevan, S.; Manickam, M.; Sivasubramanian, R. A Sol–Gel Derived LaCoO3 Perovskite as an Electrocatalyst for Al–Air Batteries. Dalton Trans. 2024, 53, 3713–3721. [Google Scholar] [CrossRef] [PubMed]
- Onajah, S.; Sarkar, R.; Islam, M.S.; Lalley, M.; Khan, K.; Demir, M.; Abdelhamid, H.N.; Farghaly, A.A. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO2 RR Electrocatalysis, and Energy Storage Applications: A Review. Chem. Rec. 2024, 24, e202300234. [Google Scholar] [CrossRef] [PubMed]
- Livage, J. Inorganic Materials, Sol–Gel Synthesis Of. Ref. Modul. Mater. Sci. Mater. Eng. 2016, 1–4. [Google Scholar] [CrossRef]
- Smeets, V.; Styskalik, A.; Debecker, D.P. Non-Hydrolytic Sol–Gel as a Versatile Route for the Preparation of Hybrid Heterogeneous Catalysts. J. Solgel Sci. Technol. 2021, 97, 505–522. [Google Scholar] [CrossRef]
- Smeets, V.; Ben Mustapha, L.; Schnee, J.; Gaigneaux, E.M.; Debecker, D.P. Mesoporous SiO2-TiO2 Epoxidation Catalysts: Tuning Surface Polarity to Improve Performance in the Presence of Water. Mol. Catal. 2018, 452, 123–128. [Google Scholar] [CrossRef]
- Saltarelli, M.; de Faria, E.H.; Ciuffi, K.J.; Nassar, E.J.; Trujillano, R.; Rives, V.; Vicente, M.A. Aminoiron(III)–Porphyrin–Alumina Catalyst Obtained by Non-Hydrolytic Sol-Gel Process for Heterogeneous Oxidation of Hydrocarbons. Mol. Catal. 2019, 462, 114–125. [Google Scholar] [CrossRef]
- Debecker, D.P.; Hulea, V.; Mutin, P.H. Mesoporous Mixed Oxide Catalysts via Non-Hydrolytic Sol–Gel: A Review. Appl. Catal. A Gen. 2013, 451, 192–206. [Google Scholar] [CrossRef]
- Shilova, O.A. Synthesis and Structure Features of Composite Silicate and Hybrid TEOS-Derived Thin Films Doped by Inorganic and Organic Additives. J. Solgel Sci. Technol. 2013, 68, 387–410. [Google Scholar] [CrossRef]
- Nishanthi, S.T.; Yadav, K.K.; Baruah, A.; Vaghasiya, K.; Verma, R.K.; Ganguli, A.K.; Jha, M. Nanostructured Silver Decorated Hollow Silica and Their Application in the Treatment of Microbial Contaminated Water at Room Temperature. New J. Chem. 2019, 43, 8993–9001. [Google Scholar] [CrossRef]
- Lavi, Y.; Burg, A.; Maimon, E.; Meyerstein, D. Electron Exchange Columns through Entrapment of a Nickel Cyclam in a Sol–Gel Matrix. Chem. A Eur. J. 2011, 17, 5188–5192. [Google Scholar] [CrossRef]
- Peled, Y.; Shamir, D.; Marks, V.; Kornweitz, H.; Albo, Y.; Yakhin, E.; Meyerstein, D.; Burg, A. Sol-Gel Matrices for the Separation of Uranyl and Other Heavy Metals. J. Environ. Chem. Eng. 2022, 10, 108142. [Google Scholar] [CrossRef]
- Huck-Iriart, C.; Morales, N.J.; Herrera, M.L.; Candal, R.J. Micro to Mesoporous SiO2 Xerogels: The Effect of Acid Catalyst Type in Sol–Gel Process. J. Solgel Sci. Technol. 2022, 102, 197–207. [Google Scholar] [CrossRef]
- Pagliaro, M.; Ciriminna, R.; Wong Chi Man, M.; Campestrini, S. Better Chemistry through Ceramics: The Physical Bases of the Outstanding Chemistry of ORMOSIL. J. Phys. Chem. B 2006, 110, 1976–1988. [Google Scholar] [CrossRef] [PubMed]
- Noack, J.; Fritz, C.; Flügel, C.; Hemmann, F.; Gläsel, H.-J.; Kahle, O.; Dreyer, C.; Bauer, M.; Kemnitz, E. Metal Fluoride-Based Transparent Nanocomposites with Low Refractive Indices. Dalton Trans. 2013, 42, 5706. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.A.; Henderson, E.J.; Veinot, J.G.C. Sol–Gel Precursors for Group 14 Nanocrystals. Chem. Commun. 2010, 46, 8704. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. The Advancements in Sol–Gel Method of Doped-TiO2 Photocatalysts. Appl. Catal. A Gen. 2010, 375, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Zhang, R. Silica Aerogels Having High Flexibility and Hydrophobicity Prepared by Sol-Gel Method. Ceram. Int. 2018, 44, 21262–21268. [Google Scholar] [CrossRef]
- Ciriminna, R.; Fidalgo, A.; Ilharco, L.M.; Pagliaro, M. AurOrGlass: ORMOSIL Sol-Gel Glasses Functionalized with Gold Nanoparticles for Advanced Optical Applications. ChemistrySelect 2019, 4, 8746–8750. [Google Scholar] [CrossRef]
- Ciriminna, R.; Pagliaro, M. Shape and Stability Matter: Enhanced Catalytic Reactions via Sol–Gel-Entrapped Catalysts. Top. Curr. Chem. 2023, 381, 5. [Google Scholar] [CrossRef]
- Lu, K. Porous and High Surface Area Silicon Oxycarbide-Based Materials—A Review. Mater. Sci. Eng. R Rep. 2015, 97, 23–49. [Google Scholar] [CrossRef]
- Avnir, D.; Levy, D.; Reisfeld, R. The Nature of the Silica Cage as Reflected by Spectral Changes and Enhanced Photostability of Trapped Rhodamine 6G. J. Phys. Chem. 1984, 88, 5956–5959. [Google Scholar] [CrossRef]
- Avnir, D. Organic Chemistry within Ceramic Matrixes: Doped Sol-Gel Materials. Acc. Chem. Res. 1995, 28, 328–334. [Google Scholar] [CrossRef]
- Aharon, S.; Patra, S.G.; Meyerstein, D.; Tzur, E.; Shamir, D.; Albo, Y.; Burg, A. Heterogeneous Electrocatalytic Oxygen Evolution Reaction by a Sol-Gel Electrode with Entrapped Na3[Ru2(μ-CO3)4]: The Effect of NaHCO3. ChemPhysChem 2023, 24, e202300517. [Google Scholar] [CrossRef]
- Zidki, T.; Bar-Ziv, R.; Green, U.; Cohen, H.; Meisel, D.; Meyerstein, D. The Effect of the Nano-Silica Support on the Catalytic Reduction of Water by Gold, Silver and Platinum Nanoparticles–Nanocomposite Reactivity. Phys. Chem. Chem. Phys. 2014, 16, 15422–15429. [Google Scholar] [CrossRef] [PubMed]
- Hungerford, G.; Ferreira, J.A. The Effect of the Nature of Retained Solvent on the Fluorescence of Nile Red Incorporated in Sol–Gel-Derived Matrices. J. Lumin. 2001, 93, 155–165. [Google Scholar] [CrossRef]
- Meneses-Nava, M.A.; Barbosa-García, O.; Díaz-Torres, L.A.; Chávez-Cerda, S.; King, T.A. Free Volume Effects on the Fluorescence Characteristics of Sol–Gel Glasses Doped with Quinine Sulfate. Opt. Mater. 1999, 13, 327–332. [Google Scholar] [CrossRef]
- Calvo-Muñoz, M.-L.; Roux, C.; Brunet, F.; Bourgoin, J.-P.; Ayral, A.; El-Mansouri, A.; Tran-Thi, T.-H. Chemical Sensors of Monocyclic Aromatic Hydrocarbons Based on Sol–Gel Materials: Synthesis, Structural Characterization and Molecular Interactions. J. Mater. Chem. 2002, 12, 461–467. [Google Scholar] [CrossRef]
- Martínez Casillas, D.C.; Longinotti, M.P.; Bruno, M.M.; Vaca Chávez, F.; Acosta, R.H.; Corti, H.R. Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes. J. Phys. Chem. C 2018, 122, 3638–3647. [Google Scholar] [CrossRef]
- Axelrod, E.; Puzenko, A.; Haruvy, Y.; Reisfeld, R.; Feldman, Y. Negative Dielectric Loss Phenomenon in Porous Sol–Gel Glasses. J. Non Cryst. Solids 2006, 352, 4166–4173. [Google Scholar] [CrossRef]
- Ganonyan, N.; Benmelech, N.; Bar, G.; Gvishi, R.; Avnir, D. Entrapment of Enzymes in Silica Aerogels. Mater. Today 2020, 33, 24–35. [Google Scholar] [CrossRef]
- Zhang, X.; Zeng, L.; Wang, Y.; Tian, J.; Wang, J.; Sun, W.; Han, H.; Yang, Y. Selective Separation of Metals from Wastewater Using Sulfide Precipitation: A Critical Review in Agents, Operational Factors and Particle Aggregation. J. Environ. Manag. 2023, 344, 118462. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Ozaki, H.; Sharma, K.; Saktaywin, W. Performance of an Ultra-Low-Pressure Reverse Osmosis Membrane (ULPROM) for Separating Heavy Metal: Effects of Interference Parameters. Desalination 2002, 144, 287–294. [Google Scholar] [CrossRef]
- Jin, W.; Zhang, Y. Sustainable Electrochemical Extraction of Metal Resources from Waste Streams: From Removal to Recovery. ACS Sustain. Chem. Eng. 2020, 8, 4693–4707. [Google Scholar] [CrossRef]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A Comprehensive Review on Conventional and Biological-Driven Heavy Metals Removal from Industrial Wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological Approaches to Tackle Heavy Metal Pollution: A Survey of Literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef]
- Zaimee, M.Z.A.; Sarjadi, M.S.; Rahman, M.L. Heavy Metals Removal from Water by Efficient Adsorbents. Water 2021, 13, 2659. [Google Scholar] [CrossRef]
- Topare, N.S.; Wadgaonkar, V.S. A Review on Application of Low-Cost Adsorbents for Heavy Metals Removal from Wastewater. Mater. Today Proc. 2023, 77, 8–18. [Google Scholar] [CrossRef]
- Xu, J.; He, J.; Zhu, L.; Guo, S.; Chen, H. A Novel Utilization of Raw Sepiolite: Preparation of Magnetic Adsorbent Directly Based on Sol–Gel for Adsorption of Pb(II). Environ. Sci. Pollut. Res. 2022, 29, 77448–77461. [Google Scholar] [CrossRef]
- Garg, B.; Bist, J.; Sharma, R.; Bhojak, N. Solid-Phase Extraction of Metal Ions and Their Estimation in Vitamins, Steel and Milk Using 3-Hydroxy-2-Methyl-1,4-Naphthoquinone-Immobilized Silica Gel. Talanta 1996, 43, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Mahmood, F.; Khokhar, M.Y.; Ahmed, S. Functionalized Sol–Gel Material for Extraction of Mercury (II). React. Funct. Polym. 2006, 66, 1014–1020. [Google Scholar] [CrossRef]
- Im, H.-J.; Yost, T.L.; Yang, Y.; Bramlett, J.M.; Yu, X.; Fagan, B.C.; Allain, L.R.; Chen, T.; Barnes, C.E.; Dai, S.; et al. Organofunctional Sol-Gel Materials for Toxic Metal Separation. ACS Symp. Ser. 2006, 943, 223–237. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.; Zachariadis, G.; Anthemidis, A. Automated Solid Phase Extraction of Cd(II), Co(II), Cu(II) and Pb(II) Coupled with Flame Atomic Absorption Spectrometry Utilizing a New Sol-Gel Functionalized Silica Sorbent. Separations 2021, 8, 100. [Google Scholar] [CrossRef]
- Saad, B.; Chong, C.C.; Ali, A.S.M.; Bari, M.F.; Rahman, I.A.; Mohamad, N.; Saleh, M.I. Selective Removal of Heavy Metal Ions Using Sol–Gel Immobilized and SPE-Coated Thiacrown Ethers. Anal. Chim. Acta 2006, 555, 146–156. [Google Scholar] [CrossRef]
- Paulusse, J.M.J.; van Beek, D.J.M.; Sijbesma, R.P. Reversible Switching of the Sol−Gel Transition with Ultrasound in Rhodium(I) and Iridium(I) Coordination Networks. J. Am. Chem. Soc. 2007, 129, 2392–2397. [Google Scholar] [CrossRef]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The Evolution of ‘Sol–Gel’ Chemistry as a Technique for Materials Synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef]
- Zelinski, B.J.J.; Uhlmann, D.R. Gel Technology in Ceramics. J. Phys. Chem. Solids 1984, 45, 1069–1090. [Google Scholar] [CrossRef]
- Watton, S.P.; Taylor, C.M.; Kloster, G.M.; Bowman, S.C. Coordination Complexes in Sol–Gel Silica Materials. Prog. Inorg. Chem. 2002, 51, 333–420. [Google Scholar]
- Kessler, V.G.; Spijksma, G.I.; Seisenbaeva, G.A.; Håkansson, S.; Blank, D.H.A.; Bouwmeester, H.J.M. New Insight in the Role of Modifying Ligands in the Sol-Gel Processing of Metal Alkoxide Precursors: A Possibility to Approach New Classes of Materials. J. Solgel Sci. Technol. 2006, 40, 163–179. [Google Scholar] [CrossRef]
- Dirè, S.; Ceccato, R.; Facchin, G.; Carturan, G. Synthesis of Ni Metal Particles by Reaction between Bis(Cyclooctadiene)Nickel(0) and Sol–Gel SiO2 Modified with Si–H Groups. J. Mater. Chem. 2001, 11, 678–683. [Google Scholar] [CrossRef]
- Im, H.-J.; Yang, Y.; Allain, L.R.; Barnes, C.E.; Dai, S.; Xue, Z. Funtionalized Sol−Gels for Selective Copper(II) Separation. Environ. Sci. Technol. 2000, 34, 2209–2214. [Google Scholar] [CrossRef]
- Prado, A.G.S.; Arakaki, L.N.H.; Airoldi, C. Adsorption and Separation of Cations on Chemically Modified Silica Gel Synthesised via the Sol–Gel Process. J. Chem. Soc. Dalton Trans. 2001, 14, 2206–2209. [Google Scholar] [CrossRef]
- Pogorilyi, R.; Pylypchuk, I.; Melnyk, I.; Zub, Y.; Seisenbaeva, G.; Kessler, V. Sol-Gel Derived Adsorbents with Enzymatic and Complexonate Functions for Complex Water Remediation. Nanomaterials 2017, 7, 298. [Google Scholar] [CrossRef] [PubMed]
- Yost, T.L.; Fagan, B.C.; Allain, L.R.; Barnes, C.E.; Dai, S.; Sepaniak, M.J.; Xue, Z. Crown Ether-Doped Sol−Gel Materials for Strontium(II) Separation. Anal. Chem. 2000, 72, 5516–5519. [Google Scholar] [CrossRef] [PubMed]
- Khor, S.W.; Lee, Y.K.; Abas, M.R.B.; Tay, K.S. Application of Chalcone-Based Dithiocarbamate Derivative Incorporated Sol–Gel for the Removal of Hg (II) Ion from Water. J. Solgel Sci. Technol. 2017, 82, 834–845. [Google Scholar] [CrossRef]
- Lerner, N.; Meyerstein, D.; Shamir, D.; Marks, V.; Shamish, Z.; Ohaion-Raz, T.; Maimon, E. A Chemically Modified Silica-Gel as an Ion Exchange Resin for Pre-Concentration of Actinides and Lanthanides. Inorganica Chim. Acta 2019, 486, 642–647. [Google Scholar] [CrossRef]
- Laporte, F.A.; Lebrun, C.; Vidaud, C.; Delangle, P. Phosphate-Rich Biomimetic Peptides Shed Light on High-Affinity Hyperphosphorylated Uranyl Binding Sites in Phosphoproteins. Chem.–A Eur. J. 2019, 25, 8570–8578. [Google Scholar] [CrossRef] [PubMed]
- Shurygin, I.D.; Nasyrova, M.G.; Muslimov, E.R.; Cherkasov, R.A.; Garifzyanov, A.R. The Acid-Base Properties and the Complexation of Tributyl [Aminotris(Methylenephosphonic Acid)] in Aqueous Solution. Phosphorus Sulfur Silicon Relat. Elem. 2016, 191, 1547–1548. [Google Scholar] [CrossRef]
- Tan, B.; Chang, C.; Xu, D.; Wang, Y.; Qi, T. Modeling of the Competition between Uranyl Nitrate and Nitric Acid upon Extraction with Tri-n-Butyl Phosphate. ACS Omega 2020, 5, 12174–12183. [Google Scholar] [CrossRef]
- Petriev, V.M.; Tishchenko, V.K.; Mikhailovskaya, A.A.; Stepchenkova, E.D.; Kuzenkova, K.A.; Postnov, A.A.; Zavestovskaya, I.N. The Influence of Chemical Structure of Phosphonic Acids Labeled with Gallium-68 on Their Pharmacokinetic Properties in Animals. J. Phys. Conf. Ser. 2020, 1439, 012031. [Google Scholar] [CrossRef]
- Popov, K.; Rönkkömäki, H.; Lajunen, L.H.J. Critical Evaluation of Stability Constants of Phosphonic Acids (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 1641–1677. [Google Scholar] [CrossRef]
- Kuhn, R.; Jensch, R.; Bryant, I.M.; Fischer, T.; Liebsch, S.; Martienssen, M. The Influence of Selected Bivalent Metal Ions on the Photolysis of Diethylenetriamine Penta(Methylenephosphonic Acid). Chemosphere 2018, 210, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Binning, R.C.; Curtiss, L.A. Compact Contracted Basis Sets for Third-row Atoms: Ga–Kr. J. Comput. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868, Erratum in Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Pierre, A.; Bonnet, J.; Vekris, A.; Portier, J. Encapsulation of Deoxyribonucleic Acid Molecules in Silica and Hybrid Organic-Silica Gels. J. Mater. Sci. Mater. Med. 2001, 12, 51–55. [Google Scholar] [CrossRef]
- Ismail, F.; Schoenleber, M.; Mansour, R.; Bastani, B.; Fielden, P.; Goddard, N.J. Strength of Interactions between Immobilized Dye Molecules and Sol–Gel Matrices. Analyst 2011, 136, 807–815. [Google Scholar] [CrossRef]
- Capeletti, L.B.; Dos Santos, J.H.Z.; Moncada, E.; Da Rocha, Z.N.; Pepe, I.M. Encapsulated Alizarin Red Species: The Role of the Sol–Gel Route on the Interaction with Silica Matrix. Powder Technol. 2013, 237, 117–124. [Google Scholar] [CrossRef]
- Pereira, A.P.V.; Vasconcelos, W.L.; Oréfice, R.L. Novel Multicomponent Silicate–Poly(Vinyl Alcohol) Hybrids with Controlled Reactivity. J. Non Cryst. Solids 2000, 273, 180–185. [Google Scholar] [CrossRef]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–Gel Based Materials for Biomedical Applications. Prog. Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Attia, S.; Shames, A.; Zilbermann, I.; Goobes, G.; Maimon, E.; Meyerstein, D. Covalent Binding of a Nickel Macrocyclic Complex to a Silica Support: Towards an Electron Exchange Column. Dalton Trans. 2014, 43, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Lentink, S.; Salazar Marcano, D.E.; Moussawi, M.A.; Parac-Vogt, T.N. Exploiting Interactions between Polyoxometalates and Proteins for Applications in (Bio)Chemistry and Medicine. Angew. Chem. Int. Ed. 2023, 135, e202303817. [Google Scholar] [CrossRef]
- Liu, J.-X.; Zhang, X.-B.; Li, Y.-L.; Huang, S.-L.; Yang, G.-Y. Polyoxometalate Functionalized Architectures. Coord. Chem. Rev. 2020, 414, 213260. [Google Scholar] [CrossRef]
- Singh, C.; Meyerstein, D.; Shamish, Z.; Shamir, D.; Burg, A. Unique Activity of a Keggin POM for Efficient Heterogeneous Electrocatalytic OER. iScience 2024, 27, 109551. [Google Scholar] [CrossRef]
- Ahmadian, M.; Anbia, M. Oxidative Desulfurization of Liquid Fuels Using Polyoxometalate-Based Catalysts: A Review. Energy Fuels 2021, 35, 10347–10373. [Google Scholar] [CrossRef]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rev. 2015, 115, 4893–4962. [Google Scholar] [CrossRef]
- Budych, M.J.W.; Staszak, K.; Bajek, A.; Pniewski, F.; Jastrząb, R.; Staszak, M.; Tylkowski, B.; Wieszczycka, K. The Future of Polyoxymetalates for Biological and Chemical Apllications. Coord. Chem. Rev. 2023, 493, 215306. [Google Scholar] [CrossRef]
- Ammam, M. Polyoxometalates: Formation, Structures, Principal Properties, Main Deposition Methods and Application in Sensing. J. Mater. Chem. A Mater. 2013, 1, 6291. [Google Scholar] [CrossRef]
- Gumerova, N.I.; Rompel, A. Synthesis, Structures and Applications of Electron-Rich Polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112. [Google Scholar] [CrossRef]
- Lei, J.; Yang, J.; Liu, T.; Yuan, R.; Deng, D.; Zheng, M.; Chen, J.; Cronin, L.; Dong, Q. Tuning Redox Active Polyoxometalates for Efficient Electron-Coupled Proton-Buffer-Mediated Water Splitting. Chem. A Eur. J. 2019, 25, 11432–11436. [Google Scholar] [CrossRef]
- Chen, J.-J.; Symes, M.D.; Cronin, L. Highly Reduced and Protonated Aqueous Solutions of [P2W18O62]6− for on-Demand Hydrogen Generation and Energy Storage. Nat. Chem. 2018, 10, 1042–1047. [Google Scholar] [CrossRef]
- Minato, T.; Matsumoto, T.; Ogo, S. Homogeneous Catalytic Reduction of Polyoxometalate by Hydrogen Gas with a Hydrogenase Model Complex. RSC Adv. 2019, 9, 19518–19522. [Google Scholar] [CrossRef] [PubMed]
- Miras, H.N.; Yan, J.; Long, D.-L.; Cronin, L. Engineering Polyoxometalates with Emergent Properties. Chem. Soc. Rev. 2012, 41, 7403. [Google Scholar] [CrossRef] [PubMed]
- Neelam; Albo, Y.; Shamir, D.; Burg, A.; Palaniappan, S.; Goobes, G.; Meyerstein, D. Polyoxometalates Entrapped in Sol–Gel Matrices for Reducing Electron Exchange Column Applications. J. Coord. Chem. 2016, 69, 3449–3457. [Google Scholar] [CrossRef]
- Genovese, M.; Lian, K. Polyoxometalate Modified Inorganic–Organic Nanocomposite Materials for Energy Storage Applications: A Review. Curr. Opin. Solid State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Lai, S.Y.; Ng, K.H.; Cheng, C.K.; Nur, H.; Nurhadi, M.; Arumugam, M. Photocatalytic Remediation of Organic Waste over Keggin-Based Polyoxometalate Materials: A Review. Chemosphere 2021, 263, 128244. [Google Scholar] [CrossRef]
- Neelam; Meyerstein, D.; Burg, A.; Shamir, D.; Albo, Y. Polyoxometalates Entrapped in Sol-Gel Matrices as Electron Exchange Columns and Catalysts for the Reductive de-Halogenation of Halo-Organic Acids in Water. J. Coord. Chem. 2018, 71, 3180–3193. [Google Scholar] [CrossRef]
- Neelam; Albo, Y.; Burg, A.; Shamir, D.; Meyerstein, D. Bromate Reduction by an Electron Exchange Column. Chem. Eng. J. 2017, 330, 419–422. [Google Scholar] [CrossRef]
- Wolfer, Y. Fixation Complexes of Transition Metal in Sol Gel Matrix for Using in Variety Catalytic Processes. Ph.D. Thesis, Ben-Gurion University of the Negev, Beer Sheva, Israel, 2017. [Google Scholar]
- Shamir, D.; Elias, I.; Albo, Y.; Meyerstein, D.; Burg, A. ORMOSIL-Entrapped Copper Complex as Electrocatalyst for the Heterogeneous de-Chlorination of Alkyl Halides. Inorganica Chim. Acta 2020, 500, 119225. [Google Scholar] [CrossRef]
- Shamir, D.; Wolfer, Y.; Shames, A.I.; Albo, Y.; Burg, A. Stabilization of Ni(I)(1,4,8,11-tetraazacyclotetradecane)+ in a Sol-Gel Matrix: It’s Plausible Use in Catalytic Processes. Isr. J. Chem. 2020, 60, 557–562. [Google Scholar] [CrossRef]
- Patra, S.G.; Mondal, T.; Sathiyan, K.; Mizrahi, A.; Kornweitz, H.; Meyerstein, D. Na3[Ru2(µ-CO3)4] as a Homogeneous Catalyst for Water Oxidation; HCO3− as a Co-Catalyst. Catalysts 2021, 11, 281. [Google Scholar] [CrossRef]
- Navon, N.; Golub, G.; Cohen, H.; Paoletti, P.; Valtancoli, B.; Bencini, A.; Meyerstein, D. Design of Ligands That Stabilize Cu(I) and Shift the Reduction Potential of the Cu II/I Couple Cathodically in Aqueous Solutions. Inorg. Chem. 1999, 38, 3484–3488. [Google Scholar] [CrossRef] [PubMed]
- Navon, N.; Cohen, H.; Paoletti, P.; Valtancoli, B.; Bencini, A.; Meyerstein, D. Design of Ligands Which Improve Cu(I) Catalysis. Ind. Eng. Chem. Res. 2000, 39, 3536–3540. [Google Scholar] [CrossRef]
- Adhikary, J.; Meyerstein, D.; Marks, V.; Meistelman, M.; Gershinsky, G.; Burg, A.; Shamir, D.; Kornweitz, H.; Albo, Y. Sol-Gel Entrapped Au0- and Ag0-Nanoparticles Catalyze Reductive de-Halogenation of Halo-Organic Compounds by BH4−. Appl. Catal. B 2018, 239, 450–462. [Google Scholar] [CrossRef]
- Trabelsi, K.; Meistelman, M.; Ciriminna, R.; Albo, Y.; Pagliaro, M. Effective and Green Removal of Trichloroacetic Acid from Disinfected Water. Materials 2020, 13, 827. [Google Scholar] [CrossRef]
- Neelam; Meyerstein, D.; Adhikary, J.; Burg, A.; Shamir, D.; Albo, Y. Zero-Valent Iron Nanoparticles Entrapped in SiO2 Sol-Gel Matrices: A Catalyst for the Reduction of Several Pollutants. Catal. Commun. 2020, 133, 105819. [Google Scholar] [CrossRef]
- Meistelman, M.; Meyerstein, D.; Bardea, A.; Burg, A.; Shamir, D.; Albo, Y. Reductive Dechlorination of Chloroacetamides with NaBH4 Catalyzed by Zero Valent Iron, ZVI, Nanoparticles in ORMOSIL Matrices Prepared via the Sol-Gel Route. Catalysts 2020, 10, 986. [Google Scholar] [CrossRef]
- Meistelman, M.; Meyerstein, D.; Burg, A.; Shamir, D.; Albo, Y. “Doing More with Less”: Ni(II)@ORMOSIL, a Novel Sol-Gel Pre-Catalyst for the Reduction of Nitrobenzene. Catalysts 2021, 11, 1391. [Google Scholar] [CrossRef]
- Zidki, T.; Cohen, H.; Meyerstein, D.; Meisel, D. Effect of Silica-Supported Silver Nanoparticles on the Dihydrogen Yields from Irradiated Aqueous Solutions. J. Phys. Chem. C 2007, 111, 10461–10466. [Google Scholar] [CrossRef]
- Vallyathan, V.; Shi, X.; Castranova, V. Reactive Oxygen Species: Their Relation to Pneumoconiosis and Carcinogenesis. Environ. Health Perspect. 1998, 106, 1151–1155. [Google Scholar] [CrossRef]
- Fubini, B.; Hubbard, A. Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) Generation by Silica in Inflammation and Fibrosis. Free Radic. Biol. Med. 2003, 34, 1507–1516. [Google Scholar] [CrossRef]
- Shi, X.; Ding, M.; Chen, F.; Wang, J.; Rojanasakul, Y.; Vallyathan, V.; Castranova, V. Reactive Oxygen Species and Molecular Mechanism of Silica-Induced Lung Injury. J. Environ. Pathol. Toxicol. Oncol. 2001, 20, 10. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Cocchi, M.; Muniz-Miranda, F.; Pedone, A.; Castellini, E.; Strani, L. Iron Nuclearity in Mineral Fibres: Unravelling the Catalytic Activity for Predictive Modelling of Toxicity. J. Hazard. Mater. 2024, 469, 134004. [Google Scholar] [CrossRef]
- Li, Y.; Kolasinski, K.W.; Zare, R.N. Silica Particles Convert Thiol-Containing Molecules to Disulfides. Proc. Natl. Acad. Sci. USA 2023, 120, e2304735120. [Google Scholar] [CrossRef]
- Xia, Y.; Li, J.; Zhang, Y.; Yin, Y.; Chen, B.; Liang, Y.; Jiang, G.; Zare, R.N. Contact between Water Vapor and Silicate Surface Causes Abiotic Formation of Reactive Oxygen Species in an Anoxic Atmosphere. Proc. Natl. Acad. Sci. USA 2023, 120, e2302014120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burg, A.; Yadav, K.K.; Meyerstein, D.; Kornweitz, H.; Shamir, D.; Albo, Y. Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds. Gels 2024, 10, 441. https://doi.org/10.3390/gels10070441
Burg A, Yadav KK, Meyerstein D, Kornweitz H, Shamir D, Albo Y. Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds. Gels. 2024; 10(7):441. https://doi.org/10.3390/gels10070441
Chicago/Turabian StyleBurg, Ariela, Krishna K. Yadav, Dan Meyerstein, Haya Kornweitz, Dror Shamir, and Yael Albo. 2024. "Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds" Gels 10, no. 7: 441. https://doi.org/10.3390/gels10070441
APA StyleBurg, A., Yadav, K. K., Meyerstein, D., Kornweitz, H., Shamir, D., & Albo, Y. (2024). Effect of Sol–Gel Silica Matrices on the Chemical Properties of Adsorbed/Entrapped Compounds. Gels, 10(7), 441. https://doi.org/10.3390/gels10070441