Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation—Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Swelling Experiment Results
2.2. Deswelling Experiment Results
2.3. Swelling Kinetics
2.4. Scanning Electron Microscopy (SEM) Investigation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Swelling and Deswelling Experiments
4.2.2. Swelling Kinetics Methodology
4.2.3. Morphological Investigations by Scanning Electron Microscopy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azeem, M.K.; Islam, A.; Khan, R.U.; Rasool, A.; Qureshi, M.A.R.; Rizwan, M.; Sher, F.; Rasheed, T. Eco-friendly three-dimensional hydrogels for sustainable agricultural applications: Current and future scenarios. Polym. Adv. Technol. 2023, 34, 3046–3062. [Google Scholar] [CrossRef]
- Tariq, Z.; Iqbal, D.N.; Rizwan, M.; Ahmad, M.; Faheem, M.; Ahmed, M. Significance of biopolymer-based hydrogels and their applications in agriculture: A review in perspective of synthesis and their degree of swelling for water holding. RSC Adv. 2023, 13, 24731–24754. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Ruiz Cantu, L.; Pearce, A.; He, Y.; Lentz, J.; Moore, J.; Machado, F.; Rivers, G.; Apebende, E.; Romero Fernandez, M.; et al. Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. Polymer 2021, 228, 123912. [Google Scholar] [CrossRef]
- Chronopoulou, L.; Cacciotti, I.; Amalfitano, A.; Di Nitto, A.; D’Arienzo, V.; Nocca, G.; Palocci, C. Biosynthesis of innovative calcium phosphate/hydrogel composites: Physicochemical and biological characterization. Nanotechnology 2020, 32, 095102. [Google Scholar] [CrossRef] [PubMed]
- Santhamoorthy, M.; Kim, S.-C. Dual pH- and Thermo-Sensitive Poly(N-isopropylacrylamide-co-allylamine) Nanogels for Curcumin Delivery: Swelling–Deswelling Behavior and Phase Transition Mechanism. Gels 2023, 9, 536. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, A.; Quint, J.; Russell, C.; Tamayol, A. Nanocomposite hydrogels for tissue engineering applications. In Biomaterials for Organ and Tissue Regeneration. New Technologies and Future Prospects, 1st ed.; Vrana, N.E., Knopf-Marques, H., Barthes, J., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Delhi, India, 2020; pp. 499–528. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, S.; Ren, X.; Zhang, J.; Lin, Q.; Zhao, Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem. Rev. 2022, 122, 5405–6918. [Google Scholar] [CrossRef]
- Guilherme, M.; Aouada, F.; Fajardo, A.; Martins, A.; Paulino, A.; Davi, M.; Rubira, A.; Muniz, E. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polym. J. 2015, 72, 365–385. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chem. Rev. 2020, 120, 7642–7707. [Google Scholar] [CrossRef]
- Guo, Y.; Bae, J.; Zhao, F.; Yu, G. Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends Chem. 2019, 1, 335–348. [Google Scholar] [CrossRef]
- Hennink, W.E.; van Nostrum, C.F. Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 13–36. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- El-Naggar, A.A. Radiation synthesis of superabsorbent hydrogels based on carboxymethyl cellulose/sodium alginate for absorbent of heavy metal ions from waste water. J. Thermoplast. Compos. 2016, 29, 16–27. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Harzandi, A.; Hosseinzadeh, H. Synthesis of a novel polysaccharide-based superabsorbent hydrogel via graft copolymerization of acrylic acid onto kappa-carrageenan in air. Eur. Polym. J. 2004, 40, 1363–1370. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Ayyari, M.; Amini-Fazl, A. Taguchi optimized synthesis of collagen-g-poly (acrylic acid)/kaolin composite superabsorbent hydrogel. Eur. Polym. J. 2008, 44, 1209–1216. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef] [PubMed]
- Palanivelu, S.D.; Armir, N.A.Z.; Zulkifli, A.; Hair, A.H.A.; Salleh, K.M.; Lindsey, K.; Che-Othman, M.H.; Zakaria, S. Hydrogel Application in Urban Farming: Potentials and Limitations—A Review. Polymers 2022, 14, 2590. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Nishat, N.; Jadoun, S.; Ansari, M.Z. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. Carbohydr. Polym. Technol. Appl. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Sikdar, P.; Uddin, M.M.; Dip, T.M.; Islam, S.; Hoque, M.S.; Dhar, A.K.; Wu, S. Recent Advances in the Synthesis of Smart Hydrogels. Mater. Adv. 2021, 2, 4532–4573. [Google Scholar] [CrossRef]
- Yang, J.; Rao, L.; Wang, Y.; Zhao, Y.; Liu, D.; Wang, Z.; Fu, L.; Wang, Y.; Yang, X.; Li, Y.; et al. Recent Advances in Smart Hydrogel Prepared by Ionizing Radiation Technology for Biomedical Applications. Polymers 2022, 14, 4377. [Google Scholar] [CrossRef]
- Trivedi, J.; Chourasia, A. Sodium Salt of Partially Carboxymethylated Sodium Alginate-Graft-Poly(Acrylonitrile): II Superabsorbency, Salt Sensitivity and Swelling Kinetics of Hydrogel, H-Na-PCMSA-g-PAN. Gels 2023, 9, 407. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, X.; Li, M.; Li, Z.; Shi, J.; Huang, X.; Zou, X.; Yan, M.; Qian, W.; Gong, Y.; et al. Saccharomyces cerevisiaeincorporated and sucrose-rich sodium alginate film: An effective antioxidant packaging film for longan preservation. Int. J. Biol. Macromol. 2022, 223 Pt A, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Sramkova, P.; Kucka, J.; Kronekova, Z.; Lobaz, V.; Slouf, M.; Micusík, M.; Josef Sepitka, J.; Kleinova, A.; Chorvat, D.; Mateasik, A.; et al. Electron beam irradiation as a straightforward way to produce tailorable non-biofouling poly(2-methyl-2-oxazoline) hydrogel layers on different substrates. Appl. Surf. Sci. 2023, 625, 157061. [Google Scholar] [CrossRef]
- Stachowiak, N.; Kowalonek, J.; Kozlowska, J.; Burkowska-But, A. Stability Studies, Biodegradation Tests, and Mechanical Properties of Sodium Alginate and Gellan Gum Beads Containing Surfactant. Polymers 2023, 15, 2568. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef]
- Kowalski, G.; Witczak, M.; Kuterasinski, L. Structure Effects on Swelling Properties of Hydrogels Based on Sodium Alginate and Acrylic Polymers. Molecules 2024, 29, 1937. [Google Scholar] [CrossRef]
- Tang, S.; Zhao, Y.; Wang, H.; Wang, Y.; Zhu, H.; Chen, Y.; Chen, S.; Jin, S.; Yang, Z.; Li, P.; et al. Preparation of the Sodium Alginate-g-(Polyacrylic Acid-co-Allyltrimethylammonium Chloride) Polyampholytic Superabsorbent Polymer and Its Dye Adsorption Property. Mar. Drugs 2018, 16, 476. [Google Scholar] [CrossRef]
- Ismaeilimoghadam, S.; Jonoobi, M.; Hamzeh, Y.; Danti, S. Effect of Nanocellulose Types on Microporous Acrylic Acid/Sodium Alginate Super Absorbent Polymers. J. Funct. Biomater. 2022, 13, 273. [Google Scholar] [CrossRef]
- Abouzeid, R.E.; Salama, A.; El-Fakharany, E.M.; Guarino, V. Mineralized Polyvinyl Alcohol/Sodium Alginate Hydrogels Incorporating Cellulose Nanofibrils for Bone and Wound Healing. Molecules 2022, 27, 697. [Google Scholar] [CrossRef] [PubMed]
- Elyashevich, G.; Rosova, E.; Zoolshoev, Z.; Saprykina, N.; Kuryndin, I. Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers. J. Compos. Sci. 2023, 7, 261. [Google Scholar] [CrossRef]
- Bai, M.; Wilske, B.; Buegger, F.; Esperschutz, J.; Bach, M.; Frede, H.G.; Breuer, L. Relevance of nonfunctional linear polyacrylic acid for the biodegradation of superabsorbent polymer in soils. Environ. Sci. Pollut. Res. 2015, 22, 5444–5452. [Google Scholar] [CrossRef]
- Caykara, T.; Demirci, S.; Eroglu, M.S.; Guven, O. Poly(ethylene oxide) and its blends with sodium alginate. Polymer 2005, 46, 10750–10757. [Google Scholar] [CrossRef]
- Kondo, T.; Sawatari, C. Intermolecular hydrogen bonding in cellulose/poly(ethylene oxide) blends: Thermodynamic examination using 2,3-di-O- and 6-O-methylcelluloses as cellulose model compounds. Polymer 1994, 35, 4423–4428. [Google Scholar] [CrossRef]
- Erizal, E.; Wikanta, T. Synthesis of polyethylene oxide (peo)–chitosan hydrogel prepared by gamma radiation technique. Indones. J. Chem. 2011, 11, 16–20. [Google Scholar] [CrossRef]
- Craciun, G.; Calina, I.C.; Demeter, M.; Scarisoreanu, A.; Dumitru, M.; Manaila, E. Poly(Acrylic Acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron Beam Irradiation Part I: Impact of Initiator Concentration and Irradiation Dose on Structure, Network Parameters and Swelling Properties. Materials 2023, 16, 4552. [Google Scholar] [CrossRef] [PubMed]
- Manaila, E.; Demeter, M.; Calina, I.C.; Craciun, G. NaAlg-g-AA Hydrogels: Candidates in Sustainable Agriculture Applications. Gels 2023, 9, 316. [Google Scholar] [CrossRef]
- ALSamman, M.T.; Sánchez, J. Chitosan- and Alginate-Based Hydrogels for the Adsorption of Anionic and Cationic Dyes from Water. Polymers 2022, 14, 1498. [Google Scholar] [CrossRef]
- Salvbaroy Polar Iceberg Water. Available online: https://svalbardi.com/blogs/water/distilled (accessed on 17 April 2024).
- Lin, H.; Zhou, J.; Yingde, C.; Gunasekaran, S. Synthesis and Characterization of pH- and Salt-Responsive Hydrogels Based on Etherificated Sodium Alginate. J. Appl. Polym. Sci. 2010, 115, 3161–3167. [Google Scholar] [CrossRef]
- Hajime, M.; Masato, M.; Mitsuru, S. Ion-specific swelling of hydrophilic polymer gels. Polymer 2001, 42, 6313–6316. [Google Scholar] [CrossRef]
- da Silva Fernandes, R.; Tanaka, F.N.; de Moura, M.R.; Aouada, F.A. Development of alginate/starch-based hydrogels crosslinked with different ions: Hydrophilic, kinetic and spectroscopic properties. Mater. Today Commun. 2019, 21, 100636. [Google Scholar] [CrossRef]
- Gierszewska, M.; Ostrowska-Czubenko, J.; Chrzanowska, E. pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate. Eur. Polym. J. 2018, 101, 282–290. [Google Scholar] [CrossRef]
- Chen, X.X.; Shan, G.G.; Huang, J.; Huang, Z.Z.; Weng, Z.Z. Synthesis and properties of acrylic-based superabsorbent. J. Appl. Polym. Sci. 2004, 92, 619–624. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J., Jr. Statistical mechanics of cross-linked polymer networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Wu, X.; Huang, X.; Zhu, Y.; Li, J.; Hoffmann, M.R. Synthesis and application of superabsorbent polymer microspheres for rapid concentration and quantification of microbial pathogens in ambient water. Sep. Purif. Technol. 2020, 239, 116540. [Google Scholar] [CrossRef]
- Ciftbudak, S.; Orakdogen, N. Correlation between effective charge density and crosslinking efficiency of dicarboxylic acid containing highly anionic networks. Polymer 2023, 266, 125612. [Google Scholar] [CrossRef]
- Böni, L.J.; Zurflüh, R.; Baumgartner, M.E.; Windhab, E.J.; Fischer, P.; Kuster, S.; Rühs, P.A. Effect of ionic strength and seawater cations on hagfish slime formation. Sci. Rep. 2018, 8, 9867. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, S.; Hatami, S.; Ardalan, M.M.; Alikhani, H.A.; Shorafa, M. The effect of compost and vermicompost of yard leaf manure on growth of corn. Afr. J. Agric. Res. 2010, 5, 1317–1323. [Google Scholar]
- Lv, Q.; Wu, M.; Shen, Y. Enhanced swelling ratio and water retention capacity for novel superabsorbent hydrogel. Colloid. Surface A 2019, 583, 123972. [Google Scholar] [CrossRef]
- Yavari, N.; Saeid Azizian, S. Mixed diffusion and relaxation kinetics model for hydrogels swelling. J. Mol. Liq. 2022, 363, 119861. [Google Scholar] [CrossRef]
- Madduma-Bandarage, U.S.K.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138, 50376. [Google Scholar] [CrossRef]
- Mondal, S.; Das, S.; Nandi, A.K. A review on recent advances in polymer and peptide hydrogels. Soft Matter 2020, 16, 1404–1454. [Google Scholar] [CrossRef]
- Samateh, M.; Pottackal, N.; Manafirasi, S.; Vidyasagar, A.; Maldarelli, C.; John, G. Unravelling the secret of seed-based gels in water: The nanoscale 3D network formation. Sci. Rep. 2018, 8, 7315. [Google Scholar] [CrossRef] [PubMed]
- Kankala, R.K.; Wang, S.-B.; Chen, A.-Z.; Zhang, Y.S. Self-Assembled Nanogels: From Particles to Scaffolds and Membranes. In Handbook of Nanomaterials for Cancer Theranostics, 1st ed.; Conde, J., Ed.; Elsevier: Beijing, China, 2018; pp. 33–62. [Google Scholar] [CrossRef]
- Gao, S.; Jiang, G.; Li, B.; Han, P. Effects of high-concentration salt solutions and pH on swelling behavior of physically and chemically cross-linked hybrid hydrophobic association hydrogels with good mechanical strength. Soft Mater. 2018, 16, 249–264. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: New York, NY, USA, 1953; pp. 69–98. [Google Scholar]
- Pourjavadi, A.; Kurdtabar, M.; Ghasemzadeh, H. Salt-and pH-resisting collagen based highly porous hydrogel. Polym. J. 2008, 40, 94–103. [Google Scholar] [CrossRef]
- Baker, J.P.; Hong, L.H.; Blanch, H.W.; Prausnitz, J.M. Effect of initial total monomer concentration on the swelling behavior of cationic acrylamide based hydrogels. Macromolecules 1994, 27, 1446–1454. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Li, D.; Shu, M.; Shang, L.; Xia, M.; Huang, Y. High-strength, thermosensitive double network hydrogels with antibacterial functionality. Soft Matter 2021, 17, 6688–6696. [Google Scholar] [CrossRef]
- Jovanovic, J.; Adnadjevic, B.; Kostic, A. The effects of the pH value of the swelling medium on the kinetics of the swelling of a poly (acrylic acid) hydrogel. J. Appl. Polym. Sci. 2010, 116, 1036–1043. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Gierszewska, M.; Pieróg, M. pH-responsive hydrogel membranes based on modified chitosan: Water transport and kinetics of swelling. J. Polym. Res. 2015, 22, 153. [Google Scholar] [CrossRef]
- Alizadeh, M.; Abbasi, F.; Farahi, M.; Jalili, K. Silicone-based hydrogels prepared by interpenetrating polymer network synthesis: Swelling properties and confinements effects on the formation kinetics. J. Appl. Polym. Sci. 2012, 124, 985–992. [Google Scholar] [CrossRef]
- Tanaka, T. Gels. Sci. Am. 1981, 244, 124–136. [Google Scholar] [CrossRef]
- Peters, A.; Candau, S. Kinetics of swelling of spherical and cylindrical gels. Macromolecules 1988, 21, 2278–2282. [Google Scholar] [CrossRef]
- Singh, T.; Singhal, R. Poly (acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. J. Appl. Polym. Sci. 2012, 125, 1267–1283. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, K.J.; Kim, I.Y.; Kim, S.I. Swelling kinetics of interpenetrating polymer hydrogels composed of poly (vinyl alcohol)/chitosan. J. Macromol. Sci. A 2003, 40, 501–510. [Google Scholar] [CrossRef]
- Schott, H. Swelling kinetics of polymers. J. Macromol. Sci. B 1992, 31, 1–9. [Google Scholar] [CrossRef]
- Schott, H. Kinetics of swelling of polymers and their gels. J. Pharm. Sci. 1992, 81, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.; Adnadjevic, B.; Popovic, A.; Jovanovic, J. Comparison of the swelling kinetics of a partially neutralized poly (acrylic acid) hydrogel in distilled water and physiological solution. J. Serb. Chem. Soc. 2007, 72, 1139–1153. [Google Scholar] [CrossRef]
- Skrzypczaka, D.; Mikulaa, K.; Kossińskab, N.; Widerab, B.; Warchoła, J.; Moustakasc, K.; Chojnackaa, K.; Witek-Krowiakb, A. Biodegradable hydrogel materials for water storage in agriculture—Review of recent research. Desalination Water Treat. 2020, 194, 324–332. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Brazel, C.S.; Peppas, N.A. Mechanisms of solute and drug transport in relaxing, swellable, hydrophilic glassy polymers. Polymer 1999, 40, 3383–3398. [Google Scholar] [CrossRef]
- Erizal, E.; Sudirman, S.; Budianto, E.; Mahendra, A.; Yudianti, R. Radiation Synthesis of Superabsorbent Poly(acrylamide-co-acrylic acid)-Sodium Alginate Hydrogels. Adv. Mater. Res. 2013, 746, 88–96. [Google Scholar] [CrossRef]
- Manaila, E.; Craciun, G.; Ighigeanu, D.; Calina, I.C. Sodium Alginate-g-acrylamide/acrylic Acid Hydrogels Obtained by Electron Beam Irradiation for Soil Conditioning. Int. J. Mol. Sci. 2023, 24, 104. [Google Scholar] [CrossRef] [PubMed]
- Karadag, E.; Saraydin, D. Swelling studies of super water retainer acrylamide/crotonic acid hydrogels crosslinked by trimethylolpropane triacrylate and 1,4-butanediol dimethacrylate. Polym. Bull. 2002, 48, 299–307. [Google Scholar] [CrossRef]
- Karadag, E.; Saraydin, D.; Sahiner, N.; Güven, O. Radiation induced acrylamide/citric acid hydrogelas and their swelling behaviors. J. Macromol. Sci. A 2001, 38, 1105–1121. [Google Scholar] [CrossRef]
- Niu, C.; Li, X.; Wang, Y.; Liu, X.; Shi, J.; Wang, X. Design and performance of a poly(vinyl alcohol)/silk fibroin enzymatically crosslinked semiinterpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Adv. 2019, 9, 41074–41082. [Google Scholar] [CrossRef] [PubMed]
- James, J.D.; Ludwick, J.M.; Wheeler, M.L.; Oyen, M.L. Compressive failure of hydrogel spheres. J. Mater. Res. 2020, 35, 1227–1235. [Google Scholar] [CrossRef]
- Karadag, E.; Uzum, O.B.; Saraydin, D. Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels. Eur. Polym. J. 2002, 38, 2133–2141. [Google Scholar] [CrossRef]
- Jabbari, E.; Nozari, S. Swelling behaviour of acrylic acid hydrogels prepared by c-radiation crosslinking of polyacrylic acid in aqueous solution. Eur. Polym. J. 2000, 36, 2685–2692. [Google Scholar] [CrossRef]
- Espert, A.; Vilaplana, F.; Karlsson, S. Comparison of water absorption in natural cellulosic fibres from wood and one-year crops in polypropylene composites and its influence on their mechanical properties. Compos. Part A Appl. Sci. Manuf. 2004, 35, 1267–1276. [Google Scholar] [CrossRef]
- Kumar, K.A.A.; Sreekala, M.S.; Arun, S. Studies on Properties of Bio-Composites from Ecoflex/Ramie Fabric-Mechanical and Barrier Properties. J. Biomater. Nanobiotechnol. 2012, 3, 396–404. [Google Scholar] [CrossRef]
- Ehi, I.P.; Bidemi, J.K.; Yahaya, L.E. Kinetic Studies on Water Absorption properties of Cocoa-pod Epoxy Composites. Iran. (Iran.) J. Energy Environ. 2016, 7, 48–51. [Google Scholar]
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) |
---|---|---|---|---|
0% PP (type I) | ||||
5 | 0.910 ± 0.001 | 0.892 ± 0.001 | 0.820 ± 0.008 | 0.898 ± 0.002 |
10 | 0.824 ± 0.002 | 0.805 ± 0.002 | 0.714 ± 0.008 | 0.813 ± 0.002 |
15 | 0.813 ± 0.0028 | 0.802 ± 0.004 | 0.698 ± 0.009 | 0.822 ± 0.002 |
20 | 0.849 ± 0.009 | 0.934 ± 0.005 | 0.772 ± 0.015 | 0.925 ± 0.002 |
0.1% PP (type II) | ||||
5 | 0.996 ± 0.001 | 0.975 ± 0.002 | 0.894 ± 0.008 | 0.976 ± 0.003 |
10 | 1.134 ± 0.003 | 1.084 ± 0.007 | 0.975 ± 0.014 | 1.096 ± 0.003 |
15 | 0.998 ± 0.004 | 0.979 ± 0.005 | 0.874 ± 0.010 | 0.999 ± 0.004 |
20 | 0.838 ± 0.010 | 0.877 ± 0.006 | 0.738 ± 0.013 | 0.888 ± 0.005 |
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) |
---|---|---|---|---|
0% PP (type I) | ||||
5 | 567 ± 6 | 229 ± 8 | 74 ± 4 | 270 ± 10 |
10 | 353 ± 11 | 149 ± 6 | 50 ± 3 | 178 ± 6 |
15 | 207 ± 6 | 117 ± 6 | 39 ± 2 | 165 ± 5 |
20 | 84 ± 1 | 116 ± 7 | 32 ± 2 | 107 ± 4 |
0.1% PP (type II) | ||||
5 | 685 ± 7 | 248 ± 11 | 84 ± 4 | 263 ± 11 |
10 | 441 ± 1 | 136 ± 10 | 55 ± 5 | 158 ± 4 |
15 | 209 ± 1 | 110 ± 6 | 50 ± 2 | 141 ± 5 |
20 | 106 ± 5 | 98 ± 7 | 32 ± 2 | 115 ± 5 |
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) | ||||
---|---|---|---|---|---|---|---|---|
k1,S | R2 | k1,S | R2 | k1,S | R2 | k1,S | R2 | |
Hydrogels of Type I (0% PP) | ||||||||
5 | 1.394 | 0.995 | 2.100 | 0.995 | 1.809 | 0.999 | 1.360 | 0.996 |
10 | 1.947 | 0.999 | 2.358 | 0.997 | 2.286 | 0.993 | 1.782 | 0.999 |
15 | 2.641 | 0.997 | 2.393 | 0.999 | 2.644 | 0.998 | 2.477 | 0.994 |
20 | 3.475 | 0.979 | 2.658 | 0.996 | 2.878 | 0.998 | 2.298 | 0.999 |
Hydrogels of Type II (0.1% PP) | ||||||||
5 | 1.288 | 0.994 | 1.530 | 0.996 | 1.911 | 0.998 | 1.435 | 0.996 |
10 | 1.977 | 0.997 | 2.096 | 0.997 | 2.437 | 0.989 | 2.080 | 0.998 |
15 | 2.266 | 0.996 | 3.441 | 0.996 | 2.542 | 0.996 | 2.134 | 0.999 |
20 | 2.887 | 0.990 | 2.432 | 0.995 | 3.030 | 0.992 | 2.384 | 0.990 |
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k2,S | Seq | R2 | k2,S | Seq | R2 | k2,S | Seq | R2 | k2,S | Seq | R2 | |
Hydrogels of Type I (0% PP) | ||||||||||||
5 | 0.046 | 352,010 | 0.022 | 2.419 | 44,622 | 0.888 | 4.809 | 17,478 | 0.907 | 0.167 | 144,095 | 0.309 |
10 | 2.929 | 47,914 | 0.014 | 4.177 | 31,206 | 0.509 | 4.935 | 19,337 | 0.899 | 0.269 | 117,094 | 0.430 |
15 | 1.461 | 52,834 | 0.975 | 6.099 | 24,607 | 0.946 | 15.204 | 9635 | 0.941 | 1.853 | 40,321 | 0.922 |
20 | 1.289 | 61,253 | 0.790 | 4.359 | 28,678 | 0.890 | 13.884 | 12,290 | 0.997 | 3.003 | 35,204 | 0.909 |
Hydrogels of Type II (0.1% PP) | ||||||||||||
5 | 5.637 | 24,686 | 0.977 | 7.072 | 20,229 | 0.962 | 22.593 | 8869 | 0.934 | 5.780 | 26,850 | 0.930 |
10 | 4.202 | 26,542 | 0.981 | 19.458 | 14,574 | 0.929 | 17.990 | 9989 | 0.914 | 4.355 | 28,181 | 0.917 |
15 | 23.880 | 8820 | 0.935 | 13.178 | 13,249 | 0.979 | 32.532 | 6813 | 0.955 | 6.464 | 20,203 | 0.981 |
20 | 13.863 | 11,970 | 0.945 | 8.786 | 17,653 | 0.960 | 40.959 | 6273 | 0.955 | 7.301 | 20,359 | 0.952 |
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k | n | R2 | k | n | R2 | k | n | R2 | k | n | R2 | |
Hydrogels of Type I (0% PP) | ||||||||||||
5 | 2.228 | 1.130 | 0.999 | 3.326 | 1.035 | 0.999 | 1.910 | 0.939 | 0.999 | 2.366 | 1.045 | 0.999 |
10 | 5.873 | 0.936 | 0.998 | 4.261 | 0.950 | 0.998 | 2.710 | 0.867 | 0.991 | 3.463 | 0.963 | 1.000 |
15 | 6.849 | 0.884 | 0.999 | 4.393 | 0.909 | 0.999 | 1.770 | 0.960 | 0.992 | 3.523 | 0.997 | 0.997 |
20 | 10.405 | 0.725 | 0.998 | 5.051 | 0.852 | 0.997 | 1.846 | 0.913 | 0.998 | 4.037 | 0.913 | 0.999 |
Hydrogels of Type II (0.1% PP) | ||||||||||||
5 | 2.650 | 1.124 | 0.992 | 2.214 | 1.075 | 0.998 | 1.953 | 0.968 | 0.997 | 2.569 | 1.042 | 0.998 |
10 | 3.110 | 1.051 | 0.997 | 3.389 | 0.979 | 0.997 | 2.309 | 0.947 | 0.987 | 3.304 | 0.996 | 0.999 |
15 | 3.773 | 0.955 | 0.990 | 3.891 | 1.086 | 0.998 | 1.806 | 0.996 | 0.996 | 3.336 | 0.980 | 0.999 |
20 | 8.054 | 0.773 | 0.998 | 4.209 | 0.905 | 0.996 | 1.948 | 0.926 | 0.991 | 3.401 | 0.955 | 0.997 |
Dose (kGy) | Distilled Water (pH = 6.05) | Tap Water (pH = 7.66) | Sol. A (pH = 5.40) | Sol. B (pH = 7.45) | ||||
---|---|---|---|---|---|---|---|---|
D | R2 | D | R2 | D | R2 | D | R2 | |
Hydrogels of Type I (0% PP) | ||||||||
5 | 1.980 | 0.975 | 4.430 | 0.977 | 0.241 | 0.974 | 1.852 | 0.965 |
10 | 1.019 | 0.981 | 1.953 | 0.979 | 0.173 | 0.974 | 1.575 | 0.978 |
15 | 0.728 | 0.997 | 1.585 | 0.983 | 0.135 | 0.965 | 0.948 | 0.955 |
20 | 0.197 | 1.000 | 0.593 | 0.987 | 0.100 | 0.972 | 0.896 | 0.984 |
Hydrogels of Type II (0.1% PP) | ||||||||
5 | 2.297 | 0.958 | 4.617 | 0.965 | 0.845 | 0.969 | 3.277 | 0.968 |
10 | 1.465 | 0.950 | 2.854 | 0.972 | 0.834 | 0.975 | 2.319 | 0.978 |
15 | 1.060 | 0.991 | 2.265 | 0.987 | 0.464 | 0.976 | 1.650 | 0.982 |
20 | 0.329 | 0.995 | 0.948 | 0.982 | 0.278 | 0.981 | 1.268 | 0.820 |
Dose (kGy) | Type I (0 % PP) | Type II (0.1% PP) | ||||||
---|---|---|---|---|---|---|---|---|
G (%) | q × 103 (mol/cm3) | ξ (nm) | P (%) | G(%) | q × 103 (mol/cm3) | ξ (nm) | P (%) | |
5 | 87.78 ± 3.30 | 0.434 ± 0.02 | 223.1 ± 5.87 | 99.71 ± 0.01 | 88.86 ± 2.13 | 0.382 ± 0.01 | 248.6 ± 5.02 | 99.77 ± 0.01 |
10 | 93.39 ± 2.37 | 0.840 ± 0.07 | 138.8 ± 7.96 | 99.51 ± 0.02 | 91.79 ± 3.30 | 1.117 ± 0.11 | 121.3 ± 8.25 | 99.57 ± 0.03 |
15 | 94.07 ± 2.23 | 1.909 ± 0.09 | 78.3 ± 5.54 | 99.24 ± 0.04 | 92.97 ± 3.97 | 2.958 ± 0.24 | 60.4 ± 3.24 | 99.23 ± 0.03 |
20 | 94.48 ± 1.94 | 9.958 ± 0.82 | 25.6 ± 1.44 | 98.31 ± 0.09 | 94.56 ± 2.16 | 6.770 ± 0.86 | 33.3 ± 2.86 | 98.61 ± 0.10 |
Swelling Media | Specifications |
---|---|
Distilled water | Boiling point: 100 °C; freezing point: 0 °C; oxidizing capacity: not applicable; density (at 20 °C): 1 g/cm3; solubility in water: soluble; pH: 6.05 |
Tap water | Ammonium (NH4+): <0.05 mg/L; total hardness (°dH): 8.18; calcium (Ca2+): 58.44 mg/L; magnesium (Mg2+): 35.44 mg/L; nitrites (NO2−): <0.033 mg/L; nitrates (NO3−): 5.02 mg/L; free residual chlorine: 0.33 mg/L; oxidability (permanganate index method): 1.29 mg/L; pH = 7.66 |
Nutrient solution A (sol. A) (Liquid fertilizer for balcony flowers, produced by AGRO CS, Lucenec, Slovakia [69]) | Synthetic product that was used according to the manufacturer’s instructions: 7.5 mL diluted in 1000 mL water; total nitrogen: 3.6%; nitric nitrogen (NO3−): 1.8%; ammoniacal nitrogen (NH4+): 1.8%; phosphorus (P2O5): 2.3%; potassium (K2O): 2.7%; pH = 5.40 [69] |
Nutrient solution B (sol. B) (Biopon, natural biohumus for vegetables and greens flowers, produced by Bros Sp. z o.o. sp. k., Poznan, Poland [69]) | Organic product, 100% natural (made from vermicompost) that was used according to the manufacturer’s instructions: 60 mL diluted in 1000 mL water; total nitrogen: 0.02%; phosphorus (P2O5): 0.02%; potassium (K2O): 0.05%; micronutrients: copper (0.25 mg/L), zinc (1.20 mg/L), iron (40 mg/L), manganese (2.1 mg/L); organic matter: 40.0%; pH = 7.45 [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manaila, E.; Craciun, G. Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation—Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels 2024, 10, 609. https://doi.org/10.3390/gels10090609
Manaila E, Craciun G. Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation—Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels. 2024; 10(9):609. https://doi.org/10.3390/gels10090609
Chicago/Turabian StyleManaila, Elena, and Gabriela Craciun. 2024. "Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation—Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media" Gels 10, no. 9: 609. https://doi.org/10.3390/gels10090609
APA StyleManaila, E., & Craciun, G. (2024). Poly(acrylic acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized by Electron-Beam Irradiation—Part II: Swelling Kinetics and Absorption Behavior in Various Swelling Media. Gels, 10(9), 609. https://doi.org/10.3390/gels10090609