Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling
Abstract
:1. Introduction
2. Results and Discussion
2.1. Network Pharmacology Study
2.1.1. Prediction of B-CGT Targets and Intersection Analysis with Diabetic Wound Healing Targets
2.1.2. Functional Annotation and Enrichment Analysis
2.1.3. Integration and Analysis of the Drug-Target-Function-Pathway Network
2.2. Molecular Docking Evaluation
2.3. Antibacterial Effect
2.4. Effect of B-CGT Hydrogel on Body Weight and Blood Glucose in ob/ob Mice
2.5. Wound Healing in ob/ob Mice
2.6. Granulation Tissue Repair and Epidermal Growth
2.7. In Vivo Inflammation and Macrophage Expression
2.8. In Vivo Collagen Deposition and Neovascularization
2.9. Cytoplasmic Matrix Remodeling
2.10. Degree of Oxidative Damage in the Wound
2.11. In Vivo Toxicity of the Hydrogel
3. Conclusions
4. Materials and Methods
4.1. Network Pharmacology Study
4.1.1. Prediction of Potential Targets of B-CGT
4.1.2. Venn Analysis of Drug–Disease Intersection Targets and Core Target Selection
4.1.3. Functional Annotation and Enrichment Analysis
4.1.4. Integration and Analysis of the Drug-Target-Function-Pathway Network
4.2. Molecular Docking
4.3. Antibacterial Test
4.4. In Vivo Wound Healing Experiment
4.4.1. Animals
4.4.2. Full-Thickness Skin Wound Model
4.4.3. Animal Grouping and Treatment
4.4.4. Histological Analysis by Hematoxylin and Eosin (HE) Staining
4.4.5. Masson’s Trichrome Staining Analysis
4.4.6. Immunofluorescence Analysis
4.4.7. Immunohistochemistry Analysis
4.4.8. ELISA Detection
4.4.9. Measurement of Oxidative Damage
4.5. Hydrogel Toxicity Assessment
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Christ-Crain, M.; Bichet, D.G.; Fenske, W.K.; Goldman, M.B.; Rittig, S.; Verbalis, J.G.; Verkman, A.S. Diabetes insipidus. Nat. Rev. Dis. Primers 2019, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Christ-Crain, M.; Gaisl, O. Diabetes insipidus. Presse Med. 2021, 50, 104093. [Google Scholar] [CrossRef]
- Kothari, V.; Cardona, Z.; Eisenberg, Y. Adipsic diabetes insipidus. Handb. Clin. Neurol. 2021, 181, 261–273. [Google Scholar] [CrossRef]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, D.G. Wound healing and diabetes mellitus. Clin. Plast. Surg. 2003, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, U.A.; DiPietro, L.A. Diabetes and Wound Angiogenesis. Int. J. Mol. Sci. 2017, 18, 1419. [Google Scholar] [CrossRef] [PubMed]
- Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: New insights. Adv. Ther. 2014, 31, 817–836. [Google Scholar] [CrossRef]
- Stachura, A.; Khanna, I.; Krysiak, P.; Paskal, W.; Włodarski, P. Wound Healing Impairment in Type 2 Diabetes Model of Leptin-Deficient Mice—A Mechanistic Systematic Review. Int. J. Mol. Sci. 2022, 23, 8621. [Google Scholar] [CrossRef] [PubMed]
- Kanapathy, M.; Hachach-Haram, N.; Bystrzonowski, N.; Connelly, J.T.; O’Toole, E.A.; Becker, D.L.; Mosahebi, A.; Richards, T. Epidermal grafting for wound healing: A review on the harvesting systems, the ultrastructure of the graft and the mechanism of wound healing. Int. Wound J. 2017, 14, 16–23. [Google Scholar] [CrossRef]
- Martin, P.; Nunan, R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 2015, 173, 370–378. [Google Scholar] [CrossRef]
- Nazir, M.A.; AlGhamdi, L.; AlKadi, M.; AlBeajan, N.; AlRashoudi, L.; AlHussan, M. The burden of Diabetes, Its Oral Complications and Their Prevention and Management. Open Access Maced. J. Med. Sci. 2018, 6, 1545–1553. [Google Scholar] [CrossRef]
- Schneider, C.; Stratman, S.; Kirsner, R.S. Lower Extremity Ulcers. Med. Clin. N. Am. 2021, 105, 663–679. [Google Scholar] [CrossRef] [PubMed]
- Peña, O.A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell Biol. 2024, 25, 599–616. [Google Scholar] [CrossRef]
- Cai, F.; Wang, P.; Chen, W.; Zhao, R.; Liu, Y. The physiological phenomenon and regulation of macrophage polarization in diabetic wound. Mol. Biol. Rep. 2023, 50, 9469–9477. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-Wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef]
- Louiselle, A.E.; Niemiec, S.M.; Zgheib, C.; Liechty, K.W. Macrophage polarization and diabetic wound healing. Transl. Res. 2021, 236, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.; Cheing, G.L. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab. Res. Rev. 2009, 25, 604–614. [Google Scholar] [CrossRef]
- Dinh, T.; Veves, A. Microcirculation of the diabetic foot. Curr. Pharm. Des. 2005, 11, 2301–2309. [Google Scholar] [CrossRef]
- Bowers, S.; Franco, E. Chronic Wounds: Evaluation and Management. Am. Fam. Physician 2020, 101, 159–166. [Google Scholar]
- Sorg, H.; Sorg, C.G.G. Skin Wound Healing: Of Players, Patterns, and Processes. Eur. Surg. Res. 2023, 64, 141–157. [Google Scholar] [CrossRef] [PubMed]
- Sorg, H.; Tilkorn, D.J.; Hager, S.; Hauser, J.; Mirastschijski, U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur. Surg. Res. 2017, 58, 81–94. [Google Scholar] [CrossRef]
- Holl, J.; Kowalewski, C.; Zimek, Z.; Fiedor, P.; Kaminski, A.; Oldak, T.; Moniuszko, M.; Eljaszewicz, A. Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells 2021, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Kirsner, R. Pathophysiology of acute wound healing. Clin. Dermatol. 2007, 25, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef]
- Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res. 2012, 49, 35–43. [Google Scholar] [CrossRef]
- Yang, F.; Zhong, W.; Pan, S.; Wang, Y.; Xiao, Q.; Gao, X. Recent advances in the mechanism of hydrogen sulfide in wound healing in diabetes. Biochem. Biophys. Res. Commun. 2024, 692, 149343. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, T.; Li, M.; Sun, H.; Wu, H.; Wu, W.; Li, Y.; Jiang, H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater. Sci. Eng. 2024, 10, 6790–6813. [Google Scholar] [CrossRef]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 2019, 112, 108615. [Google Scholar] [CrossRef]
- Powers, J.G.; Higham, C.; Broussard, K.; Phillips, T.J. Wound healing and treating wounds: Chronic wound care and management. J. Am. Acad. Dermatol. 2016, 74, 607–625, quiz 625-6. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Kharaziha, M.; Baidya, A.; Annabi, N. Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Adv. Mater. 2021, 33, e2100176. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, C.; Wang, B.; Yin, J.; Yan, S. Progress in Hydrogels for Skin Wound Repair. Macromol. Biosci. 2022, 22, e2100475. [Google Scholar] [CrossRef]
- Tehrany, P.M.; Rahmanian, P.; Rezaee, A.; Ranjbarpazuki, G.; Sohrabi Fard, F.; Asadollah Salmanpour, Y.; Zandieh, M.A.; Ranjbarpazuki, A.; Asghari, S.; Javani, N.; et al. Multifunctional and theranostic hydrogels for wound healing acceleration: An emphasis on diabetic-related chronic wounds. Environ. Res. 2023, 238 Pt 1, 117087. [Google Scholar] [CrossRef] [PubMed]
- Las Heras, K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef]
- Liu, G.; Mu, K.L.; Ran, F.; Liu, J.M.; Zhou, L.L.; Peng, L.Q.; Feng, G.; Liu, Y.C.; Wei, F.D.; Zhu, L.L.; et al. The hemostatic activity and Mechanistic roles of glucosyloxybenzyl 2-isobutylmalate extract (BSCE) from Bletilla striata (Thunb.) Rchb. f. in Inhibiting pulmonary hemorrhage. Heliyon 2024, 10, e38203. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Mu, K.; Liu, G.; Liu, Y.; Pang, Y.; Feng, G.; Zhou, L.; Peng, L. Preparation, Characterization, and Wound Healing Promotion of Hydrogels Containing Glucosyloxybenzyl 2-Isobutylmalates Extract from Bletilla striata (Thunb.) Reichb. f. Int. J. Mol. Sci. 2024, 25, 10563. [Google Scholar] [CrossRef] [PubMed]
- Meshkani, R.; Taghikhani, M.; Mosapour, A.; Larijani, B.; Khatami, S.; Khoshbin, E.; Ahmadvand, D.; Saeidi, P.; Maleki, A.; Yavari, K.; et al. 1484insG polymorphism of the PTPN1 gene is associated with insulin resistance in an Iranian population. Arch. Med. Res. 2007, 38, 556–562. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef] [PubMed]
- Farghali, H.; Kemelo, M.K.; Canová, N.K. SIRT1 Modulators in Experimentally Induced Liver Injury. Oxid. Med. Cell. Longev. 2019, 2019, 8765954. [Google Scholar] [CrossRef] [PubMed]
- Baechler, B.L.; Bloemberg, D.; Quadrilatero, J. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy 2019, 15, 1606–1619. [Google Scholar] [CrossRef] [PubMed]
- Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature 2019, 575, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Ma, W.; Gao, W.; Xing, Y.; Chen, L.; Xia, Z.; Zhang, Z.; Dai, Z. Propofol directly induces caspase-1-dependent macrophage pyroptosis through the NLRP3-ASC inflammasome. Cell Death Dis. 2019, 10, 542. [Google Scholar] [CrossRef]
- Rui, S.; Dai, L.; Zhang, X.; He, M.; Xu, F.; Wu, W.; Armstrong, D.G.; You, Y.; Xiao, X.; Ma, Y.; et al. Exosomal miRNA-26b-5p from PRP suppresses NETs by targeting MMP-8 to promote diabetic wound healing. J. Control. Release 2024, 372, 221–233. [Google Scholar] [CrossRef]
- Wei, L.; Xu, Y.; Zhang, L.; Yang, L.; Zhao, R.C.; Zhao, D. Mesenchymal Stem Cells Promote Wound Healing and Effects on Expression of Matrix Metalloproteinases-8 and 9 in the Wound Tissue of Diabetic Rats. Stem Cells Dev. 2023, 32, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tong, G.; Fan, J.; Shen, Y.; Wang, N.; Gong, W.; Hu, Z.; Zhu, K.; Li, X.; Jin, L.; et al. FGF21 promotes migration and differentiation of epidermal cells during wound healing via SIRT1-dependent autophagy. Br. J. Pharmacol. 2022, 179, 1102–1121. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lee, B.; Lee, A.S. Endoplasmic reticulum stress-induced apoptosis: Multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 2006, 281, 7260–7270. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Du, Y.; Xing, C.; Wang, H.Y.; Wang, R.F. Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Front. Immunol. 2022, 13, 812774. [Google Scholar] [CrossRef]
- Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007, 27, 79–101. [Google Scholar] [CrossRef]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Yang, J. p53-independent signaling pathway in DNA damage-induced cell apoptosis. J. Zhejiang Univ. Med. Sci. 2013, 42, 217–223. [Google Scholar]
- Jiang, S.; Ao, D.; Ni, J.; Chen, N.; Meurens, F.; Zhu, J. The signaling relations between three adaptors of porcine C-type lectin receptor pathway. Dev. Comp. Immunol. 2020, 104, 103555. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Long, S.A.; Seth, A.K.; Geringer, M.; Xu, W.; Chavez-Munoz, C.; Leung, K.; Hong, S.J.; Galiano, R.D.; Mustoe, T.A. The use of desiccation to treat Staphylococcus aureus biofilm-infected wounds. Wound Repair Regen. 2016, 24, 394–401. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef]
- Dehbanipour, R.; Ghalavand, Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J. Clin. Pharm. Ther. 2022, 47, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Guo, W.; Amir, H. Experience of diagnosis and treatment of hard-to-heal wounds infected with Acinetobacter baumannii: A case study. J. Wound Care 2024, 33, 278–285. [Google Scholar] [CrossRef]
- Allami, M.; Mohammed, E.J.; Alnaji, Z.; Jassim, S.A. Antibiotic resistance and its correlation with biofilm formation and virulence genes in Klebsiella pneumoniae isolated from wounds. J. Appl. Genet. 2024, 65, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Kelishomi, F.Z.; Nikkhahi, F.; Amereh, S.; Ghayyaz, F.; Marashi, S.M.A.; Javadi, A.; Shahbazi, G.; Khakpour, M. Evaluation of the therapeutic effect of a novel bacteriophage in the healing process of infected wounds with Klebsiella pneumoniae in mice. J. Glob. Antimicrob. Resist. 2024, 36, 371–378. [Google Scholar] [CrossRef]
- Seitz, O.; Schürmann, C.; Hermes, N.; Müller, E.; Pfeilschifter, J.; Frank, S.; Goren, I. Wound healing in mice with high-fat diet- or ob gene-induced diabetes-obesity syndromes: A comparative study. Exp. Diabetes Res. 2010, 2010, 476969. [Google Scholar] [CrossRef] [PubMed]
- Morain, W.D.; Colen, L.B. Wound healing in diabetes mellitus. Clin. Plast. Surg. 1990, 17, 493–501. [Google Scholar] [CrossRef]
- Tsourdi, E.; Barthel, A.; Rietzsch, H.; Reichel, A.; Bornstein, S.R. Current aspects in the pathophysiology and treatment of chronic wounds in diabetes mellitus. Biomed. Res. Int. 2013, 2013, 385641. [Google Scholar] [CrossRef] [PubMed]
- Desmoulière, A.; Chaponnier, C.; Gabbiani, G. Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 2005, 13, 7–12. [Google Scholar] [CrossRef]
- Flanagan, M. The characteristics and formation of granulation tissue. J. Wound Care 1998, 7, 508–510. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Kwak, T.; Butmarc, J.; Kim, T.A.; Yufit, T.; Carson, P.; Kim, S.J.; Falanga, V. Fibroblasts from non-healing human chronic wounds show decreased expression of beta ig-h3, a TGF-beta inducible protein. J. Dermatol. Sci. 2008, 50, 15–23. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.H. Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. J. Tissue Viability 2011, 20, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, P.; Montmasson, M.; Garnier, C. Extracellular matrix contribution to skin wound re-epithelialization. Matrix Biol. 2019, 75–76, 12–26. [Google Scholar] [CrossRef]
- Boniakowski, A.E.; Kimball, A.S.; Jacobs, B.N.; Kunkel, S.L.; Gallagher, K.A. Macrophage-Mediated Inflammation in Normal and Diabetic Wound Healing. J. Immunol. 2017, 199, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Falanga, V. Wound healing and its impairment in the diabetic foot. Lancet 2005, 366, 1736–1743. [Google Scholar] [CrossRef]
- Nirenjen, S.; Narayanan, J.; Tamilanban, T.; Subramaniyan, V.; Chitra, V.; Fuloria, N.K.; Wong, L.S.; Ramachawolran, G.; Sekar, M.; Gupta, G.; et al. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes. Front. Immunol. 2023, 14, 1216321. [Google Scholar] [CrossRef]
- Schuster, R.; Younesi, F.; Ezzo, M.; Hinz, B. The Role of Myofibroblasts in Physiological and Pathological Tissue Repair. Cold Spring Harb. Perspect. Biol. 2023, 15, a041231. [Google Scholar] [CrossRef]
- Talbott, H.E.; Mascharak, S.; Griffin, M.; Wan, D.C.; Longaker, M.T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 2022, 29, 1161–1180. [Google Scholar] [CrossRef]
- Younesi, F.S.; Miller, A.E.; Barker, T.H.; Rossi, F.M.V.; Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 617–638. [Google Scholar] [CrossRef] [PubMed]
- Minor, A.J.; Coulombe, K.L.K. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 2407–2416. [Google Scholar] [CrossRef]
- Walimbe, T.; Dehghani, T.; Casella, A.; Lin, J.; Wang, A.; Panitch, A. Proangiogenic Collagen-Binding Glycan Therapeutic Promotes Endothelial Cell Angiogenesis. ACS Biomater. Sci. Eng. 2021, 7, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Maqsood, M.; Zhu, M.; Zhou, Y.; Kang, M.; Zhou, J.; Chen, J. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Diabetic Wound Healing via Promoting M2 Macrophage Polarization, Angiogenesis, and Collagen Deposition. Int. J. Mol. Sci. 2022, 23, 10421. [Google Scholar] [CrossRef]
- Wiseman, D.M.; Polverini, P.J.; Kamp, D.W.; Leibovich, S.J. Transforming growth factor-beta (TGF beta) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem. Biophys. Res. Commun. 1988, 157, 793–800. [Google Scholar] [CrossRef]
- Ricard-Blum, S.; Ruggiero, F. The collagen superfamily: From the extracellular matrix to the cell membrane. Pathol. Biol. 2005, 53, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Pascual, F.; Slatter, D.A. Collagen cross-linking: Insights on the evolution of metazoan extracellular matrix. Sci. Rep. 2016, 6, 37374. [Google Scholar] [CrossRef]
- Wong, H.H.; Seet, S.H.; Bascom, C.C.; Isfort, R.J.; Bard, F.A. Tonic repression of collagen I by the bradykinin receptor 2 in skin fibroblasts. Matrix Biol. 2023, 118, 110–128. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chi, N.; Rathnayake, R.A.C.; Wang, R. Distinctive roles of fibrillar collagen I and collagen III in mediating fibroblast-matrix interaction: A nanoscopic study. Biochem. Biophys. Res. Commun. 2021, 560, 66–71. [Google Scholar] [CrossRef]
- Wang, D.; Chang, F.; Guo, Z.; Chen, M.; Feng, T.; Zhang, M.; Cui, X.; Jiang, Y.; Li, J.; Li, Y.; et al. The influence of Type I and III collagen on the proliferation, migration and differentiation of myoblasts. Tissue Cell 2024, 90, 102506. [Google Scholar] [CrossRef]
- Kanta, J. Collagen matrix as a tool in studying fibroblastic cell behavior. Cell Adhes. Migr. 2015, 9, 308–316. [Google Scholar] [CrossRef]
- Rhee, S.; Grinnell, F. Fibroblast mechanics in 3D collagen matrices. Adv. Drug Deliv. Rev. 2007, 59, 1299–1305. [Google Scholar] [CrossRef] [PubMed]
- Moretti, L.; Stalfort, J.; Barker, T.H.; Abebayehu, D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J. Biol. Chem. 2022, 298, 101530. [Google Scholar] [CrossRef]
- Bainbridge, P. Wound healing and the role of fibroblasts. J. Wound Care 2013, 22, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Gardeazabal, L.; Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. 2024, 33, e15052. [Google Scholar] [CrossRef]
- Kallis, P.J.; Friedman, A.J. Collagen Powder in Wound Healing. J. Drugs Dermatol. 2018, 17, 403–408. [Google Scholar] [PubMed]
- Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022, 290, 120096. [Google Scholar] [CrossRef]
- Lichtman, M.K.; Otero-Vinas, M.; Falanga, V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016, 24, 215–222. [Google Scholar] [CrossRef]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef] [PubMed]
- Xiaojie, W.; Banda, J.; Qi, H.; Chang, A.K.; Bwalya, C.; Chao, L.; Li, X. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2. Cytokine Growth Factor Rev. 2022, 66, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Du, C.; Song, P.; Chen, T.; Rui, S.; Armstrong, D.G.; Deng, W. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid. Med. Cell. Longev. 2021, 2021, 8852759. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.J.; Dong, J.; Che, Y.J.; Zhu, M.F.; Wen, M.; Wang, N.N.; Wang, S.; Lu, A.P.; Cao, D.S. TargetNet: A web service for predicting potential drug-target interaction profiling via multi-target SAR models. J. Comput. Aided Mol. Des. 2016, 30, 413–424. [Google Scholar] [CrossRef]
Target Name | Uniprot_ID | Protein | Probability |
---|---|---|---|
SGLT2 | P31639 | Sodium/glucose cotransporter 2 | 1 |
SGLT1 | P13866 | Sodium/glucose cotransporter 1 | 1 |
PTPN1 | P18031 | Tyrosine-protein phosphatase non-receptor type 1 | 0.999 |
GALR3 | O60755 | Galanin receptor type 3 | 0.979 |
TOP1 | P11387 | DNA topoisomerase 1 | 0.921 |
MMP12 | P39900 | Macrophage metalloelastase | 0.891 |
PPO2 | O42713 | Polyphenol oxidase 2 | 0.855 |
ALR2 | P07943 | Aldose reductase | 0.845 |
CA13 | Q8N1Q1 | Carbonic anhydrase 13 | 0.733 |
SIRT1 | Q96EB6 | NAD-dependent protein deacetylase sirtuin-1 | 0.725 |
CASP8 | Q14790 | Caspase-8 | 0.531 |
MMP7 | P09237 | Matrilysin | 0.422 |
CA14 | Q9ULX7 | Carbonic anhydrase 14 | 0.327 |
CA12 | O43570 | Carbonic anhydrase 12 | 0.118 |
FFAR1 | O14842 | Free fatty acid receptor 1 | 0.114 |
PTGS1 | P05979 | Prostaglandin G/H synthase 1 | 0.105 |
CTSK | P43235 | Cathepsin K | 0.097 |
NR2F2 | P24468 | COUP transcription factor 2 | 0.095 |
ADORA1 | P25099 | Adenosine receptor A1 | 0.061 |
BCL2A1 | Q16548 | Bcl-2-related protein A1 | 0.045 |
DNMT1 | P26358 | DNA (cytosine-5)-methyltransferase 1 | 0.024 |
MME | P07861 | Neprilysin | 0.022 |
ADORA3 | P28647 | Adenosine receptor A3 | 0.009 |
CDC25B | P30305 | M-phase inducer phosphatase 2 | 0.009 |
EDNRB | P21451 | Endothelin B receptor | 0.006 |
NTSR1 | P30989 | Neurotensin receptor type 1 | 0.006 |
CASP1 | P29466 | Caspase-1 | 0.004 |
CACNA1B | Q00975 | Voltage-dependent N-type calcium channel subunit alpha-1B | 0.003 |
Lethal factor | P15917 | Lethal factor | 0.003 |
CASP9 | P55211 | Caspase-9 | 0.001 |
GPR35 | Q9HC97 | G-protein coupled receptor 35 | 0.001 |
MMP8 | P22894 | Neutrophil collagenase | 0.001 |
Target Name | DC | EC | LAC | BC | CC | NC |
---|---|---|---|---|---|---|
SIRT1 | 14 | 0.32 | 8.57 | 20.55 | 0.32 | 13.36 |
CASP8 | 13 | 0.31 | 8.92 | 8.42 | 0.32 | 12.40 |
CASP9 | 13 | 0.31 | 8.92 | 8.42 | 0.32 | 12.40 |
CASP1 | 12 | 0.30 | 9.00 | 4.15 | 0.31 | 11.39 |
DNMT1 | 12 | 0.28 | 7.17 | 14.32 | 0.31 | 9.85 |
PTGS1 | 12 | 0.27 | 6.83 | 43.25 | 0.31 | 8.24 |
MMP8 | 10 | 0.26 | 7.80 | 2.48 | 0.30 | 9.03 |
Classification | GO ID | Description | p-Value | p.Adjust | Genes |
---|---|---|---|---|---|
CC | GO:0044297 | cell body | 0.0001730 | 0.0120507 | CASP8; NTSR1; ADORA1; MME; TOP1 |
CC | GO:0045121 | Membrane raft | 0.0002371 | 0.0120507 | CASP8; NTSR1; EDNRB; MME |
CC | GO:0044306 | Neuron projection terminus | 0.0002373 | 0.0120507 | NTSR1; ADORA1; MME |
CC | GO:0098857 | Membrane microdomain | 0.0002398 | 0.0120507 | CASP8; NTSR1; EDNRB; MME |
CC | GO:0031904 | Endosome lumen | 0.0006352 | 0.0255344 | CTSK; PTPN1 |
BP | GO:1901216 | Positive regulation of neuron death | 0.0001011 | 0.0032803 | CASP8; CASP9; ADORA1 |
BP | GO:0016485 | Protein processing | 0.0001029 | 0.0032803 | CASP8; CASP9; CASP1; MME |
BP | GO:0034644 | Cellular response to UV | 0.0001079 | 0.0033788 | SIRT1; CASP9; MME |
BP | GO:0048522 | Positive regulation of cellular process | 0.0001142 | 0.0035093 | CASP8; SIRT1; NTSR1; MMP8; DNMT1; CASP9; EDNRB; MMP7; CASP1; ADORA1; GPR35; NR2F2; PTPN1; MME |
BP | GO:0055089 | Fatty acid homeostasis | 0.0001160 | 0.0035093 | SIRT1; ADORA1 |
MF | GO:0016787 | Hydrolase activity | 0.0002149 | 0.0043864 | CASP8; SIRT1; MMP8; CASP9; MMP7; CASP1; CTSK; PTPN1; MME |
MF | GO:0004222 | Metalloendopeptidase activity | 0.0002354 | 0.0043864 | MMP8; MMP7; MME |
MF | GO:0008528 | G protein-coupled peptide receptor activity | 0.0003557 | 0.0059849 | NTSR1; EDNRB; GPR35 |
MF | GO:0001653 | Peptide receptor activity | 0.0004006 | 0.0059849 | NTSR1; EDNRB; GPR35 |
MF | GO:0019904 | Protein domain specific binding | 0.0004087 | 0.0059849 | CASP8; SIRT1; CASP9; CASP1; TOP1 |
KEGG_A_Class | KEGG_B_Class | Pathway | p-Value | Genes | Ratio |
---|---|---|---|---|---|
Human Diseases | Infectious disease: bacterial | Legionellosis | 0.00014 | CASP8/CASP9/CASP1 | 0.052 |
Cellular Processes | Cell growth and death | Apoptosis—multiple species | 0.00144 | CASP8/CASP9 | 0.062 |
Environmental Information Processing | Signaling molecules and interaction | Neuroactive ligand–receptor interaction | 0.00328 | NTSR1/EDNRB/ADORA1/GPR35 | 0.011 |
Human Diseases | Infectious disease: viral | Influenza A | 0.00351 | CASP8/CASP9/CASP1 | 0.017 |
Organismal Systems | Endocrine system | Regulation of lipolysis in adipocytes | 0.00549 | PTGS1/ADORA1 | 0.032 |
Human Diseases | Cardiovascular disease | Lipid and atherosclerosis | 0.00653 | CASP8/CASP9/CASP1 | 0.014 |
Human Diseases | Drug resistance: antineoplastic | Platinum drug resistance | 0.00732 | CASP8/CASP9 | 0.027 |
Cellular Processes | Cell growth and death | p53 signaling pathway | 0.00732 | CASP8/CASP9 | 0.027 |
Human Diseases | Infectious disease: bacterial | Pathogenic Escherichia coli infection | 0.01261 | CASP8/CASP9/CASP1 | 0.011 |
Organismal Systems | Immune system | Toll-like receptor signaling pathway | 0.01498 | CASP8/CTSK | 0.019 |
Organismal Systems | Immune system | C-type lectin receptor signaling pathway | 0.01607 | CASP8/CASP1 | 0.018 |
Human Diseases | Infectious disease: parasitic | Toxoplasmosis | 0.01719 | CASP8/CASP9 | 0.018 |
Human Diseases | Cardiovascular disease | Viral myocarditis | 0.02297 | CASP8/CASP9 | 0.015 |
Human Diseases | Endocrine and metabolic disease | Alcoholic liver disease | 0.02733 | CASP8/SIRT1 | 0.014 |
Human Diseases | Infectious disease: viral | Measles | 0.02839 | CASP8/CASP9 | 0.013 |
Human Diseases | Infectious disease: viral | Hepatitis C | 0.03313 | CASP8/CASP9 | 0.012 |
Human Diseases | Neurodegenerative disease | Alzheimer disease | 0.03441 | CASP8/CASP9/MME | 0.007 |
Human Diseases | Infectious disease: viral | Hepatitis B | 0.03465 | CASP8/CASP9 | 0.012 |
Cellular Processes | Cell growth and death | Necroptosis | 0.03503 | CASP8/CASP1 | 0.012 |
Human Diseases | Cancer: overview | MicroRNAs in cancer | 0.03776 | SIRT1/DNMT1 | 0.011 |
Environmental Information Processing | Signal transduction | cGMP-PKG signaling pathway | 0.03816 | EDNRB/ADORA1 | 0.011 |
Organismal Systems | Endocrine system | Renin–angiotensin system | 0.04218 | MME | 0.042 |
Organismal Systems | Immune system | NOD-like receptor signaling pathway | 0.04432 | CASP8/CASP1 | 0.011 |
Human Diseases | Infectious disease: viral | Kaposi sarcoma-associated herpesvirus infection | 0.04818 | CASP8/CASP9 | 0.01 |
Human Diseases | Infectious disease: viral | Human immunodeficiency virus 1 infection | 0.05906 | CASP8/CASP9 | 0.009 |
Metabolism | Metabolism of cofactors and vitamins | Nicotinate and nicotinamide metabolism | 0.06265 | SIRT1 | 0.028 |
Human Diseases | Infectious disease: viral | Human cytomegalovirus infection | 0.06432 | CASP8/CASP9 | 0.009 |
Organismal Systems | Immune system | Toll and Imd signaling pathway | 0.06938 | CASP8 | 0.025 |
Human Diseases | Cancer: overview | Pathways in cancer | 0.06981 | CASP8/CASP9/EDNRB | 0.005 |
Human Diseases | Infectious disease: bacterial | Tuberculosis | 0.07683 | CASP8/CASP9 | 0.008 |
Target Name | Total Score | Crash | Polar |
---|---|---|---|
SIRT1 | 10.0932 | −2.6568 | 4.3866 |
CASP8 | 4.9651 | −1.4622 | 4.4537 |
CASP9 | 7.8708 | −2.5205 | 5.8399 |
CASP1 | 4.9301 | −1.5732 | 1.0869 |
DNMT1 | 7.742 | −1.3801 | 4.8213 |
PTGS1 | 7.8977 | −2.8520 | 5.7447 |
MMP8 | 7.9809 | −2.8087 | 3.9987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, F.; Mu, K.; Zhou, L.; Peng, L.; Liu, G.; Liu, Y.; Pang, Y.; Feng, G.; Guo, C.; Wang, T.; et al. Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling. Gels 2025, 11, 104. https://doi.org/10.3390/gels11020104
Ran F, Mu K, Zhou L, Peng L, Liu G, Liu Y, Pang Y, Feng G, Guo C, Wang T, et al. Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling. Gels. 2025; 11(2):104. https://doi.org/10.3390/gels11020104
Chicago/Turabian StyleRan, Fei, Kailang Mu, Lingli Zhou, Leqiang Peng, Gang Liu, Yuchen Liu, Yuxin Pang, Guo Feng, Changmao Guo, Tianjian Wang, and et al. 2025. "Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling" Gels 11, no. 2: 104. https://doi.org/10.3390/gels11020104
APA StyleRan, F., Mu, K., Zhou, L., Peng, L., Liu, G., Liu, Y., Pang, Y., Feng, G., Guo, C., Wang, T., & Luo, Q. (2025). Plant-Derived B-CGT Hydrogel Accelerates Diabetic Wound Healing Through Multitarget Modulation of Inflammation, Angiogenesis, and Tissue Remodeling. Gels, 11(2), 104. https://doi.org/10.3390/gels11020104