Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soluble-Grade Pulp Properties
2.2. Cellulose Nanocrystal Characteristics
2.3. Hydrogel Characterization
2.3.1. FTIR Spectroscopy of Hydrogels
2.3.2. Hydrogel Swelling Kinetics
2.3.3. Hydrogel Morphology Determined via SEM
2.3.4. Hydrogel Rheological Characterization
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation and Characterization of Soluble-Grade Cellulose Pulp
4.3. Obtaining and Characterization of Cellulose Nanocrystals
4.3.1. Determination of the Residual Charge in NCC via Conductance Titration
4.3.2. Particle Size Distribution Determined Using Dynamic Light Scattering (DLS)
4.3.3. AFM Morphological Analysis
4.4. Hydrogel Synthesis and Characterization
4.4.1. Hydrogel Synthesis
4.4.2. FTIR Spectroscopy
4.4.3. Swelling Kinetics
4.4.4. Scanning Electron Microscopy (SEM)
4.4.5. Rheological Characterization of Hydrogels
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. FTIR Analysis
Wavenumber (cm−1) | FTIR % A Control Samples | Variation (%) | FTIR % A Composite Hydrogels | Variation (%) | Type of Vibration of Functional Group | Reference | ||
---|---|---|---|---|---|---|---|---|
474 ± 5 | 0.08 ± 0.04 | 43 | 0.09 ± 0.07 | 79 | C-C | Deformation | AAm | [100] |
803 ± 3 | 1.09 ± 0.14 | 13 | 1.21 ± 0.52 | 44 | CH2 | Wagging | AAc | [4,144] |
C-H | Wagging | AAm | [100] | |||||
960 ± 0.8 | 1.03 ± 0.03 | 3 | 0.91 ± 0.65 | 71 | OH | Deformation | AAc | [98] |
1038 ± 6 | 2.10 ± 0.42 | 20 | 1.72 ± 0.28 | 16 | C-O | CNC | [104,105,106] | |
CH2 | Deformation | AAm | [100] | |||||
1118 ± 2 | 2.80 ± 0.44 | 16 | 2.37 ± 0.23 | 10 | -CO | Stretching | AAc | [145] |
CC | Asym stretching | AAm | [100] | |||||
1169 ± 1.4 | 3.41 ± 0.45 | 13 | 3.24 ± 0.64 | 17 | C-O-C | CNC | [104,105,106] | |
C-O | Stretching | AAc | [4] | |||||
C-C | Stretching | [100] | ||||||
1271 ± 2.6 | 3.07 ± 0.21 | 7 | 2.80 ± 0.21 | 8 | OH | Deformation | AAc | [4,108,145] |
1340 ± 0.7 | 0.05 ± 0.03 | 53 | 0.47 ± 0.17 | 35 | CH2 | Wagging | AAc, AAm, NMBA | [100] |
1354 ± 6 | 1.73 ± 0.22 | 13 | 1.20 ± 0.23 | 19 | N-H, C-N with 670 | Stretching and flexion | AAm | [4] |
NH2 | Scissoring | AAm | [100] | |||||
1422 ± 3 | 1.99 ± 0.25 | 12 | 1.68 ± 0.20 | 12 | C-O, O-H | C-O stretching and O-H flexion | AAc, NMBA | [98,144] |
C-O, O-H | Flexion | AAm | [4] | |||||
n-crystal | CNC | [103] | ||||||
1455 ± 2 | 2.17 ± 0.15 | 7 | 2.14 ± 0.19 | 9 | COO- | AAm | ||
CH2 | Asym stretching | AAc | [4,144,145] | |||||
CH2 | Asym stretching | AAm | [100] | |||||
1588 ± 5 | 4.69 ± 0.32 | 7 | 3.35 ± 0.95 | 29 | NH2 | Deformation | AAm (II) | [4,99,100,101] |
1688 ± 21 | 3.06 ± 0.45 | 15 | 4.52 ± 1.55 | 34 | C=O | Stretching | AAm (I) | [4,99,101] |
1731 ± 4 | 10.26± 0.06 | 0.6 | 9.23 ± 0.61 | 6.6 | C=O | Stretching | AAc, NMBA | [4] |
2182 ± 1.6 | 0.19 ± 0.31 | 167 | 0.24 ± 0.45 | 188 | C-N | Stretching | AAm | [100] |
2537 ± 0 | 9.46 ± 2.50 | 26 | 7.63 ± 2.68 | 35 | N-H | Stretching | AAm | [98] |
O-H | Stretching | AAc | [98] | |||||
2643 ± 16 | 5.98 ± 0.79 | 13 | 5.54 ± 0.36 | 6 | N-H | Stretching | AAm | [98] |
O-H | Stretching | AAc | [98] | |||||
2838 ± 4 | 7.78 ± 0.82 | 10.6 | 6.48 ± 0.79 | 12 | CH2 | Asym stretching | AAm | [98] |
2883 ± 8 | 2.68 ± 1.00 | 37 | 2.08 ± 0.50 | 24 | CH | Sym Stretching | AAm, | [100]) |
2942 ± 16 | 5.11 ± 1.03 | 20 | 5.31 ± 0.87 | 16 | CH2 | Asym stretching | AAm | [100,144] |
3019 ± 4 | 6.87 ± 0.44 | 6 | 2.91 ± 2.92 | 100 | CH2 | Sym stretching | AAm | [100] |
3170 ± 0 | 5.70 ± 0.23 | 4 | 6.30 ± 0.63 | 11 | OH | Stretching | AAc | [144] |
NH2 | Sym stretching | AAm | [4,100] | |||||
3326 ± 8 | 1.73 ± 0.57 | 33 | 5.6 ± 3.12 | 56 | OH | AAc, CNC | [98,104,105,106] | |
NH2 | Asym stretching | AAm | [100] | |||||
N-H | Stretching | AAm | [4] | |||||
3445 ± 16 | 10.42 ± 6.8 | 65 | 0.08 ± 0.13 | 153 | O-H, N-H | AAc, AAm | [107] | |
3650 ± 2.5 | 4.73 ± 1.88 | 40 | 4.52 ± 1.49 | 33 | O-H | Stretching | AAc | [98] |
Appendix B. Hydrogel Swelling Kinetic Images
CNCType | CNMBA | CCNC | Swelling Time (h) | ||||
---|---|---|---|---|---|---|---|
(wt. %) | 0 | 3 | 24 | 72 | 144 | ||
Control | 0.1 | 0 | |||||
0.5 | 0 | ||||||
1 | 0 | ||||||
Hu-A | 1 | 1 | |||||
Hu-B | 0.1 | 0.1 | |||||
Hu-C | 1 | 0.1 | |||||
Hu-D | 0.1 | 1 | |||||
AB | 0.5 | 1 | |||||
CW | 0.5 | 0.1 |
Appendix C. Young’s Modulus Determination
References
- Reddy, N.S.; Rao, K.S.V.K. Polymeric hydrogels: Recent advances in Toxic metal ion removal and anticancer drug delivery applications. Indian J. Adv. Chem. Sci. 2016, 4, 214–234. [Google Scholar]
- Zhou, C.; Wu, Q. A novel polyacrylamide nanocomposite hydrogel reinforced with natural chitosan nanofibers. Colloids Surf. B Biointerfaces 2011, 84, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K.; Prusty, K. Biomedical applications of acrylic-based nanohydrogels. J. Mater. Sci. 2018, 53, 2303–2325. [Google Scholar] [CrossRef]
- Lara-Valencia, V.A.; Dávila-Soto, H.; Moscoso-Sánchez, F.J.; Figueroa-Ochoa, E.B.; Carvajal-Ramos, F.; Fernández-Escamilla, V.V.A.; Soltero-Martinez, J.F.A.; Macias-Balleza, E.R.; Enríquez, S.G. The use of polysaccharides extracted from seed of Persea americana var. Hass on the synthesis of acrylic hydrogels. Quim. Nova 2018, 41, 140–150. [Google Scholar] [CrossRef]
- De Jong, S.J.; De Smedt, S.C.; Wahls, M.W.C.; Demeester, J.; Kettenes-van Den Bosch, J.J.; Hennink, W.E. Novel self-assembled hydrogels by stereocomplex formation in aqueous solution of enantiomeric lactic acid oligomers grafted to dextran. Macromolecules 2000, 33, 3680–3686. [Google Scholar] [CrossRef]
- FAO. Valores y Usos de Especies Importantes de Árboles y Arbustos en la Región Sur-Sureste de México; Food Agriculture Organization of the United Nations: Rome, Italy, 2023; Available online: https://www.fao.org/3/j0606s/j0606s0a.htm (accessed on 6 September 2023).
- Smith, T.P.; Wilson, S.B.; Marble, S.C.; Xu, J. Propagation for commercial production of sweet acacia (Vachellia farnesiana): A native plant with ornamental potential. Nativ. Plants J. 2022, 23, 337–348. [Google Scholar] [CrossRef]
- Xu, J.; Wilson, S.B.; Vendrame, W.A.; Beleski, D.G. Micropropagation of sweet acacia (Vachellia farnesiana), an underutilized ornamental tree. In Vitro Cell. Dev. Biol. Plant 2023, 59, 74–82. [Google Scholar] [CrossRef]
- Ramirez, R.G.; Ledezma-Torres, R.A. Forage utilization from native shrubs Acacia rigidula and Acacia farnesiana by goats and sheep. Small Rumin. Res. 1997, 25, 43–50. [Google Scholar] [CrossRef]
- García-Winder, L.R.; Goñi-Cedeño, S.; Olguin-Lara, P.A.; Díaz-Salgado, G.; Arriaga-Jordan, C.M. Huizache (Acacia farnesiana) whole pods (flesh and seeds) as an alternative feed for sheep in Mexico. Trop. Anim. Health Prod. 2009, 41, 1615–1621. [Google Scholar] [CrossRef]
- Delgadillo-Puga, C.; Cuchillo-Hilario, M.; León-Ortiz, L.; Ramírez-Rodríguez, A.; Cabiddu, A.; Navarro-Ocaña, A.; Morales-Romero, A.M.; Medina-Campos, O.N.; Pedraza-Chaverri, J. Goats’ feeding supplementation with Acacia farnesiana pods and their relationship with milk composition: Fatty acids, polyphenols, and antioxidant activity. Animals 2019, 9, 515. [Google Scholar] [CrossRef]
- Barrientos-Ramírez, L.; Vargas-Radillo, J.J.; Rodríguez-Rivas, A.; Ochoa-Ruíz, H.G.; Navarro-Arzate, F.; Zorrilla, J. Evaluation of characteristics of huizache (Acacia farnesiana (L.) Willd.) Fruit Potential Use Leather Tanning or Animal Feeding. Madera Bosques 2012, 18, 23–35. [Google Scholar]
- Sankaran, K.V.; Suresh, T.A. Invasive Alien Plants in the Forests of Asia and the Pacific; RAP Publication: Bangkok, Thailand, 2013. [Google Scholar]
- Khan, I.U.; Haleem, A.; Khan, A.U. Non-edible plant seeds of Acacia farnesiana as a new and effective source for biofuel production. RSC Adv. 2022, 12, 21223–21234. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Casillas, R.; López-López, M.C.; Becerra-Aguilar, B.; Dávalos-Olivares, F.; Satyanarayana, K.G. Obtaining dissolving grade cellulose from the huizache (Acacia farnesiana L. Willd.) Plant. BioRecursos 2019, 14, 3301–3318. [Google Scholar]
- Ramírez-Casillas, R.; López-López, M.; Becerra-Aguilar, B.; Dávalos-Olivares, F.; Satyanarayana, K.G. Preparation and characterization of cellulose nanocrystals using soluble grade cellulose from acid hydrolysis of Huizache (Acacia farnesiana L. Willd.). BioResources 2019, 14, 3319–3338. [Google Scholar] [CrossRef]
- AL-Tameemi, A.R.; Al-Edany, T.Y.; Attaha, A.H. Phytoremediation of crude oil contaminated soil by Acacia farnesiana L. Willd. and spraying glutathione. Univ. Thi-Qar J. Sci. 2021, 8, 59–66. [Google Scholar]
- Jiménez Muñoz, E.; Prieto García, F.; Prieto Méndez, J.; Acevedo Sandoval, O.A.; Rodríguez Laguna, R.; Otazo Sánchez, E.M. Utilization of Waste Agaves: Potential for Obtaining Cellulose Pulp. Cienc. Tec. Vitivinic. 2014, 29, 138–152. [Google Scholar]
- Berglund, L.; Noël, M.; Aitomäki, Y.; Öman, T.; Oksman, K. Production potential of cellulose nanofibers from industrial residues: Efficiency and nanofiber characteristics. Ind. Crops Prod. 2016, 92, 84–92. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crops Prod. 2016, 93, 2–25. [Google Scholar] [CrossRef]
- Reiniati, I.; Hrymak, A.N.; Margaritis, A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev. Biotechnol. 2017, 37, 510–524. [Google Scholar] [CrossRef]
- Trache, D.; Hussin, M.H.; Haafiz, M.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 2017, 9, 1763–1786. [Google Scholar] [CrossRef]
- Rånby, B.G.; Banderet, A.; Sillén, L.G. Aqueous Colloidal Solutions of Cellulose Micelles. Acta Chem. Scand. 1949, 3, 649–650. [Google Scholar] [CrossRef]
- Rånby, B.G. Fibrous macromolecular systems. Cellulose and muscle. Colloid. Prop. Cellul. Micelles Discuss. Faraday Soc. 1951, 11, 158–164. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Fachri, R.; Rizal, S.; Huzni, S.; Ikramullah, I.; Aprilia, S. Production of Cellulose Nanocrystal (CNC) Combine with Silane Treatment from Pennisetum Purpureum via Acid Hydrolysis. In Proceedings of the 4th International Conference on Experimental and Computational Mechanics in Engineering, ICECME 2022, Banda Aceh, Indonesia, 14–15 September 2022; Springer Nature: Singapore, 2022; pp. 535–543. [Google Scholar]
- Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U.P.; Zhu, J.Y. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 2015, 22, 1753–1762. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, M.; Hou, Q.; Liu, R.; Wu, T.; Si, C. Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 2016, 23, 439–450. [Google Scholar] [CrossRef]
- Gallardo-Sánchez, M.A.; Díaz-Vidal, T.; Navarro-Hermosillo, A.B.; Figueroa-Ochoa, E.B.; Ramírez Casillas, R.; Anzaldo Hernández, J.; Rosales-Rivera, L.C.; Soltero-Martinez, J.F.A.; García-Enriquez, S.; Macías-Balleza, E.R. Optimization of the obtaining of cellulose nanocrystals from Agave equilana weber var. Azul Bagasse by acid hydrolysis. Nanomaterials 2021, 11, 520. [Google Scholar] [CrossRef]
- Wang, R.; Chen, L.; Zhu, J.Y.; Yang, R. Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 2017, 3, 328–335. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Formation of hydrogels from cellulose nanofibers. Carbohydr. Polym. 2011, 85, 733–737. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Cellulose nanofiber-based hydrogels with high mechanical strength. Cellulose 2012, 19, 1907–1912. [Google Scholar] [CrossRef]
- Geng, L.; Peng, X.; Zhan, C.; Naderi, A.; Sharma, P.R.; Mao, Y.; Hsiao, B.S. Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 2017, 24, 5417–5429. [Google Scholar] [CrossRef]
- Arola, S.; Kou, Z.; Rooijakkers, B.J.; Velagapudi, R.; Sammalkorpi, M.; Linder, M.B. On the mechanism for the highly sensitive response of cellulose nanofiber hydrogels to the presence of ionic solutes. Cellulose 2022, 29, 6109–6121. [Google Scholar] [CrossRef]
- Ovalle-Serrano, S.A.; Díaz-Serrano, L.A.; Hong, C.; Hinestroza, J.P.; Blanco-Tirado, C.; Combariza, M.Y. Synthesis of cellulose nanofiber hydrogels from fique tow and Ag nanoparticles. Cellulose 2020, 27, 9947–9961. [Google Scholar] [CrossRef]
- de Oliveira, J.P.; Bruni, G.P.; Lima, K.O.; El Halal, S.L.M.; da Rosa, G.S.; Dias, A.R.G.; da Rosa Zavareze, E. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 2017, 221, 153–160. [Google Scholar] [CrossRef]
- Saragih, S.W.; Wirjosentono, B.; Meliana, Y. Influence of crosslinking agent on the morphology, chemical, crystallinity and thermal properties of cellulose nanofiber using steam explosion. Case Stud. Therm. Eng. 2020, 22, 100740. [Google Scholar] [CrossRef]
- Martínez-Salcedo, S.L.; Torres-Rendón, J.G.; García-Enriquez, S.; Anzaldo-Hernández, J.; Silva-Guzmán, J.A.; de Muniz, G.I.B.; Lomelí-Ramírez, M.G. Physicomechanical characterization of poly (acrylic acid-co-acrylamide) hydrogels reinforced with TEMPO-oxidized blue agave cellulose nanofibers. Fibers Polym. 2022, 23, 1161–1170. [Google Scholar] [CrossRef]
- Bahrami, B.; Behzad, T.; Zamani, A.; Heidarian, P.; Nasri-Nasrabadi, B. Synthesis and characterization of carboxymethyl chitosan superabsorbent hydrogels reinforced with sugarcane bagasse cellulose nanofibers. Mater. Res. Express 2019, 6, 065320. [Google Scholar] [CrossRef]
- Hassanzadeh, M.; Sabo, R.; Rudie, A.; Reiner, R.; Gleisner, R.; Oporto, G.S. Nanofibrillated cellulose from Appalachian hardwoods logging residues as template for antimicrobial copper. J. Nanomater. 2017, 1, 2102987. [Google Scholar] [CrossRef]
- Sriraveeroj, N.; Amornsakchai, T.; Sunintaboon, P.; Watthanaphanit, A. Synergistic Reinforcement of Cellulose Microfibers from Pineapple Leaf and Ionic Cross-Linking on the Properties of Hydrogels. ACS Omega 2022, 7, 25321–25328. [Google Scholar] [CrossRef]
- Yuan, N.; Xu, L.; Zhang, L.; Ye, H.; Zhao, J.; Liu, Z.; Rong, J. Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters. Mater. Sci. Eng. C 2016, 67, 221–230. [Google Scholar] [CrossRef]
- Huang, L.; Du, X.; Fan, S.; Yang, G.; Shao, H.; Li, D.; Cao, C.; Zhu, Y.; Zhu, M.; Zhang, Y. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr. Polym. 2019, 221, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Dou, C.; Li, Z.; Gong, J.; Li, Q.; Qiao, C.; Zhang, J. Bio-based poly (γ-glutamic acid) hydrogels reinforced with bacterial cellulose nanofibers exhibiting superior mechanical properties and cytocompatibility. Int. J. Biol. Macromol. 2021, 170, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, M.; Li, Y.; Ren, J.; Pei, C. Effect of cellulose nanocrystals on bacterial cellulose hydrogel for oil-water separation. Sep. Purif. Technol. 2023, 304, 122349. [Google Scholar] [CrossRef]
- Park, D.; Kim, J.W.; Shin, K.; Kim, J.W. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release. Carbohydr. Polym. 2021, 272, 118459. [Google Scholar] [CrossRef]
- Jiang, C.; Zhou, C.; Tang, W.; Chen, G.; Yin, S.N.; Xie, W.; Wu, D. Crosslinking of bacterial cellulose toward fabricating ultrastretchable hydrogels for multiple sensing with high sensitivity. ACS Sustain. Chem. Eng. 2023, 11, 11548–11558. [Google Scholar] [CrossRef]
- He, X.; Luo, X.; Wang, Y.; Zhu, J.; Li, Y.; Zhu, S.; Zhao, H. Nanoarchitectonics of nanocomposite hydrogels based on cellulose nanocrystals for biomedical applications: A review. Adv. Nanocompos. 2024, 1, 110–119. [Google Scholar] [CrossRef]
- Li, Y.; Dong, X.; Yao, L.; Wang, Y.; Wang, L.; Jiang, Z.; Qiu, D. Preparation and characterization of nanocomposite hydrogels based on self-assembling collagen and cellulose nanocrystals. Polymers 2023, 15, 1308. [Google Scholar] [CrossRef]
- May, M.N.; Sugawara, A.; Asoh, T.A.; Takashima, Y.; Harada, A.; Uyama, H. Composite hydrogels with host–guest interaction using cellulose nanocrystal as supramolecular filler. Polymer 2023, 277, 125979. [Google Scholar] [CrossRef]
- Hamad, W.Y. Cellulose Nanocrystals: Properties, Production and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Fajardo, A.R.; Pereira, A.G.; Muniz, E.C. Hydrogels nanocomposites based on crystals, whiskers and fibrils derived from biopolymers. In Eco-Friendly Polymer Nanocomposites; Advanced Structured Materials; Thakur, V., Thakur, M., Eds.; Springer: New Delhi, India, 2015; Volume 74. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, Q.; Yue, Y.; Zhang, Q. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J. Colloid Interface Sci. 2011, 353, 116–123. [Google Scholar] [CrossRef]
- Yang, J.; Han, C.R.; Xu, F.; Sun, R.C. Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 2014, 6, 5934–5943. [Google Scholar] [CrossRef]
- Du, H.; Liu, W.; Zhang, M.; Si, C.; Zhang, X.; Li, B. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 2019, 209, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Abitbol, T.; Johnstone, T.; Quinn, T.M.; Gray, D.G. Reinforcement with cellulose nanocrystals of poly (vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 2011, 7, 2373–2379. [Google Scholar] [CrossRef]
- Song, K.; Zhu, W.; Li, X.; Yu, Z. A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal. Mater. Lett. 2020, 260, 126884. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Wang, Q.; Fu, X.; Fatehi, P. Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals. Cellulose 2020, 27, 8725–8743. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Zuo, M.; Zeng, X.; Tang, X.; Sun, Y.; Lin, L. Stretchable, freezing-tolerant conductive hydrogel for wearable electronics reinforced by cellulose nanocrystals toward multiple hydrogen bonding. Carbohydr. Polym. 2022, 280, 119018. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, J.; Chang, P.R.; Li, J.; Chen, Y.; Wang, D.; Yu, J.; Chen, J. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer 2010, 51, 4398–4407. [Google Scholar] [CrossRef]
- Yang, J.; Han, C.R.; Duan, J.F.; Xu, F.; Sun, R.C. Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly (ethylene glycol) nanocomposite hydrogels. ACS Appl. Mater. Interfaces 2013, 5, 3199–3207. [Google Scholar] [CrossRef]
- Cha, R.; He, Z.; Ni, Y. Preparation and characterization of thermal/pH-sensitive hydrogel from carboxylated nanocrystalline cellulose. Carbohydr. Polym. 2012, 88, 713–718. [Google Scholar] [CrossRef]
- Zubik, K.; Singhsa, P.; Wang, Y.; Manuspiya, H.; Narain, R. Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers 2017, 9, 119. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Feng, S.; Zhang, L.; Chang, C. Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties. J. Mater. Chem. C 2021, 9, 6344–6350. [Google Scholar] [CrossRef]
- Yang, J.; Han, C. Mechanically viscoelastic properties of cellulose nanocrystals skeleton reinforced hierarchical composite hydrogels. ACS Appl. Mater. Interfaces 2016, 8, 25621–25630. [Google Scholar] [CrossRef] [PubMed]
- Voronova, M.I.; Surov, O.V.; Afineevskii, A.V.; Zakharov, A.G. Properties of polyacrylamide composites reinforced by cellulose nanocrystals. Heliyon 2020, 6, e05529. [Google Scholar] [CrossRef] [PubMed]
- Ortega, A.; Valencia, S.; Rivera, E.; Segura, T.; Burillo, G. Reinforcement of Acrylamide Hydrogels with Cellulose Nanocrystals Using Gamma Radiation for Antibiotic Drug Delivery. Gels 2023, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Amezcua, R.M.; Villanueva-Silva, R.J.; Muñoz-García, R.O.; Macias-Balleza, E.R.; Sydenstricker Flores-Sahagun, M.T.; Lomelí-Ramírez, M.G.; Torres-Rendón, J.G.; Garcia-Enriquez, S. Preparation of Agave tequilana Weber nanocrystalline cellulose and its use as reinforcement for acrylic hydrogels. BioResources 2021, 16, 2731. [Google Scholar] [CrossRef]
- Wan Ishak, W.H.; Yong Jia, O.; Ahmad, I. pH-responsive gamma-irradiated poly (acrylic acid)-cellulose-nanocrystal-reinforced hydrogels. Polymers 2020, 12, 1932. [Google Scholar] [CrossRef]
- El Idrissi, A.; El Gharrak, A.; Achagri, G.; Essamlali, Y.; Amadine, O.; Akil, A.; Sair, S.; Zahouily, M. Synthesis of urea-containing sodium alginate-g-poly (acrylic acid-co-acrylamide) superabsorbent-fertilizer hydrogel reinforced with carboxylated cellulose nanocrystals for efficient water and nitrogen utilization. J. Environ. Chem. Eng. 2022, 10, 108282. [Google Scholar] [CrossRef]
- Al-Gorair, A.S.; Sayed, A.; Mahmoud, G.A. Engineered superabsorbent nanocomposite reinforced with cellulose nanocrystals for remediation of basic dyes: Isotherm, kinetic, and thermodynamic studies. Polymers 2022, 14, 567. [Google Scholar] [CrossRef]
- Dai, Q.; Kadla, J.F. Effect of nanofillers on carboxymethyl cellulose/hydroxyethyl cellulose hydrogels. J. Appl. Polym. Sci. 2009, 114, 1664–1669. [Google Scholar] [CrossRef]
- Sutradhar, S.C.; Banik, N.; Islam, M.; Rahman Khan, M.M.; Jeong, J.H. Gamma Radiation-Induced Synthesis of Carboxymethyl Cellulose-Acrylic Acid Hydrogels for Methylene Blue Dye Removal. Gels 2024, 10, 785. [Google Scholar] [CrossRef]
- Ishak, W.H.W.; Rosli, N.A.; Ahmad, I.; Ramli, S.; Amin, M.C.I.M. Drug delivery and in vitro biocompatibility studies of gelatin-nanocellulose smart hydrogels cross-linked with gamma radiation. J. Mater. Res. Technol. 2021, 15, 7145–7157. [Google Scholar] [CrossRef]
- do Nascimento, D.M.; Nunes, Y.L.; Feitosa, J.P.; Dufresne, A.; Rosa, M.D.F. Cellulose nanocrystals-reinforced core-shell hydrogels for sustained release of fertilizer and water retention. Int. J. Biol. Macromol. 2022, 216, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Javaid, M.U.; Pan, C.; Yu, G.; Berry, R.M.; Tam, K.C. Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydr. Polym. 2020, 229, 115486. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Huang, D.; Chen, X.; Liu, H.; Feng, Y.; Zhao, Z.; Zhang, X.; Lin, Q. A novel and homogeneous scaffold material: Preparation and evaluation of alginate/bacterial cellulose nanocrystals/collagen composite hydrogel for tissue engineering. Polym. Bull. 2018, 75, 985–1000. [Google Scholar] [CrossRef]
- Soleimani, S.; Heydari, A.; Fattahi, M.; Motamedisade, A. Calcium alginate hydrogels reinforced with cellulose nanocrystals for methylene blue adsorption: Synthesis, characterization, and modelling. Ind. Crops Prod. 2023, 192, 115999. [Google Scholar] [CrossRef]
- Soleimani, S.; Heydari, A.; Fattahi, M. Swelling prediction of calcium alginate/cellulose nanocrystal hydrogels using response surface methodology and artificial neural network. Ind. Crops Prod. 2023, 192, 116094. [Google Scholar] [CrossRef]
- Olad, A.; Doustdar, F.; Gharekhani, H. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124962. [Google Scholar] [CrossRef]
- Catori, D.M.; Fragal, E.H.; Messias, I.; Garcia, F.P.; Nakamura, C.V.; Rubira, A.F. Development of composite hydrogel based on hydroxyapatite mineralization over pectin reinforced with cellulose nanocrystal. Int. J. Biol. Macromol. 2021, 167, 726–735. [Google Scholar] [CrossRef]
- Liu, D.; Dong, X.; Han, B.; Huang, H.; Qi, M. Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism. Compos. Commun. 2020, 21, 100374. [Google Scholar] [CrossRef]
- Torabizadeh, F.; Fadaie, M.; Mirzaei, E.; Sadeghi, S.; Nejabat, G.R. Tailoring structural properties, mechanical behavior and cellular performance of collagen hydrogel through incorporation of cellulose nanofibrils and cellulose nanocrystals: A comparative study. Int. J. Biol. Macromol. 2022, 219, 438–451. [Google Scholar] [CrossRef]
- Patel, D.K.; Ganguly, K.; Hexiu, J.; Dutta, S.D.; Patil, T.V.; Lim, K.T. Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohydr. Polym. 2022, 284, 119202. [Google Scholar] [CrossRef]
- Maturavongsadit, P.; Paravyan, G.; Shrivastava, R.; Benhabbour, S.R. Thermo-/pH-responsive chitosan-cellulose nanocrystals based hydrogel with tunable mechanical properties for tissue regeneration applications. Materialia 2020, 12, 100681. [Google Scholar] [CrossRef]
- Ospennikov, A.S.; Chesnokov, Y.M.; Shibaev, A.V.; Lokshin, B.V.; Philippova, O.E. Nanostructured Hydrogels of Carboxylated Cellulose Nanocrystals Crosslinked by Calcium Ions. Gels 2024, 10, 777. [Google Scholar] [CrossRef] [PubMed]
- del Carmen, L.L.M. Estudio Biométrico y Químico de la Planta Silvestre Huizache (Acacia farnesiana) y su Influencia en la Calidad de Fibra Celulósica. Bachelor’s Thesis in Biology, University of Guadalajara, Guadalajara, Mexico, 2012. [Google Scholar]
- MacLeod, J.M.; Fleming, B.I.; Kubes, G.J.; Bolker, H.I. The Strengths of Kraft-AQ [anthraquinone] and Soda-AQ Pulps: Bleachable-Grade Pulps [of Softwoods]; TAPPI, Technical Association of the Pulp and Paper Industry: Peachtree Corners, GA, USA, 1980. [Google Scholar]
- Sixta, H.; Schild, G. A new generation kraft process. Lenzing. Berichte 2009, 87, 26–37. [Google Scholar]
- Behin, J.; Mikaniki, F.; Fadaei, Z. Dissolving pulp (alpha-cellulose) from corn stalk by kraft process. Iran. J. Chem. Eng. 2008, 5, 14–28. [Google Scholar]
- Sixta, H. Handbook of Pulp; John Wiley & Sons: Weinheim, Germany, 2006. [Google Scholar]
- Chen, C.; Duan, C.; Li, J.; Liu, Y.; Ma, X.; Zheng, L.; Stavik, J.; Ni, Y. Cellulose (dissolving pulp) manufacturing processes and properties: A mini-review. BioResources 2016, 11, 5553–5564. [Google Scholar] [CrossRef]
- Wertz, J.L.; Bédué, O.; Mercier, J.P. Swelling and dissolution of cellulose. In Cellulose Science and Technology; EPFL Press: Lausanne, Switzerland, 2010; p. 62. [Google Scholar]
- Oberlerchner, J.T.; Rosenau, T.; Potthast, A. Overview of methods for the direct molar mass determination of cellulose. Molecules 2015, 20, 10313–10341. [Google Scholar] [CrossRef]
- Beck-Candanedo, S.; Roman, M.; Gray, D.G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 2005, 6, 1048–1054. [Google Scholar] [CrossRef]
- Lima, M.M.D.; Borsali, R. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromol. Rapid Commun. 2004, 25, 771–787. [Google Scholar] [CrossRef]
- Schulz, B.P.C.; Leslie, A.A.; Rubio, E. Espectroscopia de Infrarrojo; University of Guadalajara: Guadalajara, Mexico, 1989. [Google Scholar]
- Katsumoto, Y.; Tanaka, T.; Ozaki, Y. Molecular Interpretation for the Solvation of Poly (acrylamide) s. I. Solvent-Dependent Changes in the CO Stretching Band Region of Poly (N, N-dialkylacrylamide)s. J. Phys. Chem. B 2005, 109, 20690–20696. [Google Scholar] [CrossRef]
- Murugan, R.; Mohan, S.; Bigotto, A. FTIR and polarised Raman spectra of acrylamide and polyacrylamide. J. Korean Phys. Soc. 1998, 32, 505. [Google Scholar]
- Hirose, K.; Ihashi, Y.; Taguchi, S.; Yoshizawa, M. Infrared Spectra of Polymethylenebisacrylamide. Nippon Kagaku Kaishi 1966, 69, 240–244. [Google Scholar]
- Magalhães AS, G.; Almeida Neto, M.P.; Bezerra, M.N.; Ricardo, N.M.; Feitosa, J. Application of FTIR in the determination of acrylate content in poly (sodium acrylate-co-acrylamide) superabsorbent hydrogels. Quim. Nova 2012, 35, 1464–1467. [Google Scholar] [CrossRef]
- Vârban, R.; Crișan, I.; Vârban, D.; Ona, A.; Olar, L.; Stoie, A.; Ştefan, R. Comparative FT-IR prospecting for cellulose in stems of some fiber plants: Flax, velvet leaf, hemp and jute. Appl. Sci. 2021, 11, 8570. [Google Scholar] [CrossRef]
- Yu, H.Y.; Qin, Z.Y.; Liu, L.; Yang, X.G.; Zhou, Y.; Yao, J.M. Comparison of the reinforcing effects for cellulose nanocrystals obtained by sulfuric and hydrochloric acid hydrolysis on the mechanical and thermal properties of bacterial polyester. Compos. Sci. Technol. 2013, 87, 22–28. [Google Scholar] [CrossRef]
- Anwar, B.; Bundjali, B.; Arcana, I.M. Isolation of Cellulose Nanocrystals from Bacterial Cellulose Produced from Pineapple Peel Waste Juice as Culture Medium. Procedia Chem. 2015, 16, 279–284. [Google Scholar] [CrossRef]
- Contreras, H.J.; Trujillo, H.A.; Arias, G.; Pérez, J.; Delgado, E. Espectroscopia ATR-FTIR De Celulosa: Aspecto Instrumental Y Tratamiento Matemático De Espectros. e-Gnosis 2010, 8, 1–13. [Google Scholar]
- Orozco-Guareño, E.; Hernández, S.L.; Gómez-Salazar, S.; Mendizábal, E.; Katime, I. Estudio del hinchamiento de hidrogeles acrílicos terpoliméricos en agua y en soluciones acuosas de ión plumboso. Rev. Mex. Ing. Quim. 2011, 10, 465–470. [Google Scholar]
- Nesrinne, S.; Djamel, A. Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 2017, 10, 539–547. [Google Scholar] [CrossRef]
- Wen, Y.; Zhu, X.; Gauthier, D.E.; An, X.; Cheng, D.; Ni, Y.; Yin, L. Development of poly (acrylic acid)/nanofibrillated cellulose superabsorbent composites by ultraviolet light induced polymerization. Cellulose 2015, 22, 2499–2506. [Google Scholar] [CrossRef]
- Schott, H. Swelling kinetics of polymers. J. Macromol. Sci. Part B 1992, 31, 1–9. Available online: http://www.tandfonline.com/doi/pdf/10.1080/00222349208215453?needAccess=true (accessed on 19 February 2019). [CrossRef]
- Lim, L.; Rosli, N.A.; Ahmad, I.; Mat, A.; Amin, M. Synthesis and swelling behavior of pH-sensitive semi-IPN superabsorbent hydrogels based on poly(acrylic acid) reinforced with cellulose nanocrystals. Nanomaterials 2017, 7, 399. [Google Scholar] [CrossRef] [PubMed]
- Iliasov, L.; Shibaev, A.; Panova, I.; Kushchev, P.; Philippova, O.; Yaroslavov, A. Weakly Cross-Linked Anionic Copolymers: Kinetics of Swelling and Water-Retaining Properties of Hydrogels. Polymers 2023, 15, 3244. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Shekhar, S. Effect of Crosslinking on Thermodynamics Interactions and Network Parameters of Terpolymeric Hydrogels. J. Macromol. Sci. Part B 2023, 62, 689–717. [Google Scholar] [CrossRef]
- Scallan, A.M. The effect of acidic groups on the swelling of pulps: A review. Tappi J. 1983, 66, 73–75. [Google Scholar]
- Burke, N.I. Concentrated Acid Swelling of Collagen in Preparation of Edible Collagen Casing. U.S. Patent 4,233,329, 11 November 1980. [Google Scholar]
- Işık, B. Swelling Behavior and Determination of diffusion characteristics of acrylamide–acrylic acid hydrogels. J. Appl. Polym. Sci. 2003, 91, 1289–1293. [Google Scholar] [CrossRef]
- Wong, R.S.H.; Ashton, M.; Dodou, K. Effect of crosslinking agent concentration on the properties of unmedicated hydrogels. Pharmaceutics 2015, 7, 305–319. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, X.; Liu, M.Z. Effect of crosslinker type on the properties of surface-crosslinked poly (sodium acrylate) superabsorbents. Adv. Mater. Res. 2014, 936, 89–94. [Google Scholar] [CrossRef]
- Canal, T.; Peppas, N.A. Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J. Biomed. Mater. Res. 1989, 23, 1183–1193. [Google Scholar] [CrossRef]
- Erceg, T.; Dapčević-Hadnađev, T.; Hadnađev, M.; Ristić, I. Swelling kinetics and rheological behaviour of microwave synthesized poly (acrylamide-co-acrylic acid) hydrogels. Colloid Polym. Sci. 2021, 299, 11–23. [Google Scholar] [CrossRef]
- Ebrahimi, R. The study of factors affecting the swelling of ultrasound-prepared hydrogel. Polym. Bull. 2019, 76, 1023–1039. [Google Scholar] [CrossRef]
- Jin, S.; Bian, F.; Liu, M.; Chen, S.; Liu, H. Swelling mechanism of porous P (VP-co-MAA)/PNIPAM semi-IPN hydrogels with various pore sizes prepared by a freeze treatment. Polym. Int. 2009, 58, 142–148. [Google Scholar] [CrossRef]
- Wang, H.; Paul, A.; Nguyen, D.; Enejder, A.; Heilshorn, S.C. Tunable control of hydrogel microstructure by kinetic competition between self-assembly and crosslinking of elastin-like proteins. ACS Appl. Mater. Interfaces 2018, 10, 21808–21815. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.D.; Christiansen, J.D. Tension–compression asymmetry in the mechanical response of hydrogels. J. Mech. Behav. Biomed. Mater. 2020, 110, 103851. [Google Scholar] [CrossRef] [PubMed]
- Egholm, R.D.; Christensen, S.F.; Szabo, P. Stress–strain behavior in uniaxial compression of polymer gel beads. J. Appl. Polym. Sci. 2006, 102, 3037–3047. [Google Scholar] [CrossRef]
- Gamonpilas, C.; Charalambides, M.N.; Williams, J.G.; Dooling, P.J.; Gibbon, S.R. Characterisation of large deformation behaviour of starch gels using compression and indentation techniques. AIP Conf. Proc. 2008, 1027, 1189–1191. [Google Scholar]
- Anseth, K.S.; Bowman, C.N.; Brannon-Peppas, L. Mechanical properties of hydrogels and their experimental determination. Biomaterials 1996, 17, 1647–1657. [Google Scholar] [CrossRef]
- Noteborn, W.E.; Zwagerman, D.N.; Talens, V.S.; Maity, C.; van der Mee, L.; Poolman, J.M.; Mytnyk, S.; van Esch, J.H.; Kros, A.; Eelkema, R.; et al. Crosslinker-Induced Effects on the Gelation Pathway of a Low Molecular Weight Hydrogel. Adv. Mater. 2017, 29, 1603769. [Google Scholar] [CrossRef]
- Davis, T.P.; Huglin, M.B. Effect of crosslinker on properties of copolymeric N-vinyl-2-pyrrolidone/methyl methacrylate hydrogels and organogels. Makromol. Chem. 1990, 191, 331–343. [Google Scholar] [CrossRef]
- Tanpichai, S.; Oksman, K. Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: Mechanical properties and creep recovery. Compos. Part A Appl. Sci. Manuf. 2016, 88, 226–233. [Google Scholar] [CrossRef]
- Keyvani, P.; Nyamayaro, K.; Mehrkhodavandi, P.; Hatzikiriakos, S.G. Cationic and anionic cellulose nanocrystalline (CNC) hydrogels: A rheological study. Phys. Fluids 2021, 33, 043102. [Google Scholar] [CrossRef]
- Dellatolas, I.; Bantawa, M.; Damerau, B.; Guo, M.; Divoux, T.; Del Gado, E.; Bischofberger, I. Local mechanism governs global reinforcement of nanofiller-hydrogel composites. ACS Nano 2023, 17, 20939–20948. [Google Scholar] [CrossRef] [PubMed]
- López López, M.d.C. Obtención y Caracterización de Nanocristales de Celulosa, a Partir de Huizache, Producidos Mediante Diversas Condiciones de Hidrolisis Acida Controlada. Master’s Thesis, University of Guadalajara, Guadalajara, Mexico, 2017. [Google Scholar]
- Morales, R.J.P. Estudios Sobre el Comportamiento de la Madera de Huizache (Acacia farnesiana) en Procesos de Pulpeo, Enfocados Hacia la Producción de α-Celulosa para Derivados. Chemical Engineering. Master’s Thesis, University of Guadalajara, Guadalajara, Mexico, 2013. [Google Scholar]
- Muñoz, R.M.G. Blanqueo de Pulpas de Huizache (Acacia farnesiana) Para la Obtención de α-Celulosa para Derivados. Chemical Engineering. Master’s Thesis, University of Guadalajara, Guadalajara, Mexico, 2013. [Google Scholar]
- TAPPI. T236 om-22. Kappa Number of Pulp; STANDARD by Technical Association of the Pulp and Paper Industry; TAPPI Press: Atlanta, GA, USA, 2022. [Google Scholar]
- TAPPI. T230 om-19 Viscosity of Pulp (Capillary Viscometer Method); STANDARD by Technical Association of the Pulp and Paper Industry; TAPPI Press: Atlanta, GA, USA, 2019. [Google Scholar]
- TAPPI. T252 om-18. Brightness of Pulp, Paper, and Paperboard (Directional Reflectance at 457 nm); STANDARD by Technical Association of the Pulp and Paper Industry; TAPPI Press: Atlanta, GA, USA, 2018. [Google Scholar]
- TAPPI. T 203 cm-22. Alpha-, Beta- and Gamma-Cellulose in Pulp; STANDARD by Technical Association of the Pulp and Paper Industry; TAPPI Press: Atlanta, GA, USA, 2022. [Google Scholar]
- Katime, I.; Velada, J.L.; Novoa, R.; Díaz de Apodaca, E.; Puig, J.; Mendizabal, E. Swelling Kinetics of Poly (acrylamide)/Poly (mono-n-alkyl itaconates) Hydrogels. Polym. Int. 1996, 40, 281–286. [Google Scholar] [CrossRef]
- ASTM D695-23; Standard Test Method for Compressive Properties of Rigid Plastics. ASTM International: West Conshohocken, PA, USA, 2023.
- Raimond, B.S.; Carraher, C.E. Introducción a la Química de los Polímeros; Reverté SA: Barcelona, Spain, 1995. [Google Scholar]
- Rodriguez, F.; Cohen, F.; Ober, C.K.; Archer, L. Principles of Polymer Systems; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Dong, J.; Ozaki, Y.; Nakashima, K. FTIR studies of conformational energies of poly (acrylic acid) in cast films. J. Polym. Sci. Part B Polym. Phys. 1997, 35, 507–515. [Google Scholar] [CrossRef]
- Todica, M.; Stefan, R.; Pop, C.V.; Olar, L. IR and Raman investigation of some poly (acrylic) acid gels in aqueous and neutralized state. Acta Phys. Pol. A 2015, 128, 128–135. [Google Scholar] [CrossRef]
CNC Source | CNC ID | DLS | AFM | |||
---|---|---|---|---|---|---|
DH (nm) | PDI | Type of Curve | L (nm) | [AG] (mmol AG/Kg CNC) | ||
Huizache | Hu-A | 142 ± 12 | 0.32 ± 0.03 | Monomodal | 180 ± 20 | 334 ± 32 |
Hu-B | 89.5 ± 5 | 0.27 ± 0.03 | Bimodal | ND | 505 ± 22 | |
Hu-C | 116 ± 22 | 0.62 ± 0.14 | Bimodal | 120 ± 50 | 27 ± 4 | |
Hu-D | 219 ± 40 | 0.69 ± 0.24 | Bimodal | 199 ± 93 | 216 ± 27 | |
Agave bagasse | AB | 601 | * ND | |||
Commercial Wood | CW | 276 | 42 (0.4 wt. %) |
CNC Concentration (wt. %) | 0.1 | 1.0 | |||||||
---|---|---|---|---|---|---|---|---|---|
CNC Source | CNC ID | [NMBA] (wt.%) | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 | |
Schott Equation Parameters | |||||||||
Control Sample (Without CNC) | SW∞ (gwater/gxerogel) | 8.12 ± 1.03 | 4.79 ± 0.14 | 4.64 ± 0.31 | 8.12 ± 1.03 | 4.79 ± 0.14 | 4.64 ± 0.31 | ||
K × 103 (h−1) | 2.9 ± 0.3 | 5.8 ± 0.27 | 6.97 ± 0.16 | 2.9 ± 0.3 | 5.8 ± 0.27 | 6.97 ± 0.16 | |||
R2 | 0.9833 ± 0.0033 | 0.9884 ± 0.0032 | 0.9870 ± 0.0063 | 0.9833 ± 0.0033 | 0.9884 ± 0.0032 | 0.9870 ± 0.0063 | |||
Huizache | Hu-A | SW∞ (gwater/gxerogel) | 10.2 ± 2.13 | 3.70± 0.12 | 2.71 ± 0.13 | 8.46 ± 1.19 | 3.77 ± 0.27 | 2.77 ± 0.14 | |
K × 103 (h−1) | 2.1 ± 0.6 | 8.1 ± 0.5 | 11.2 ± 2 | 2.85 ± 0.5 | 5.95 ± 0.5 | 10 ± 0.5 | |||
R2 | 0.9868 ± 0.0015 | 0.9906 ± 0.0010 | 0.9909 ± 0.0031 | 0.9908 ± 0.0034 | 0.9879 ± 0.0026 | 0.9872 ± 0.0021 | |||
Hu-B | SW∞ (gwater/gxerogel) | 13.8 ± 0.96 | 4.45 ± 0.29 | 2.89 ± 0.07 | 11.54 ± 0.92 | 5.24 ± 0.38 | 2.38 ± 0.25 | ||
K × 103 (h−1) | 1 ± 0.2 | 4.2 ± 0.6 | 17 ± 2.5 | 1.15 ± 0.14 | 4.5 ± 0.7 | 28 ± 2 | |||
R2 | 0.9857 ± 0.0035 | 0.9900 ± 0.0020 | 0.9779 ± 0.0023 | 0.9755 ± 0.0021 | 0.9924 ± 0.0015 | 0.9753 ± 0.0043 | |||
Hu-C | SW∞ (gwater/gxerogel) | 7.79 ± 0.62 | 3.11 ± 0.10 | 2.66 ± 0.18 | 7.61 ± 0.93 | 3.70 ± 0.22 | 2.91 ± 0.98 | ||
K × 103 (h−1) | 1.7 ± 0.3 | 14 ± 0.9 | 11.1 ± 3 | 1.9 ± 0.4 | 6.5 ± 1 | 10 ± 1 | |||
R2 | 0.9786 ± 0.0027 | 0.9844 ± 0.0022 | 0.9838 ± 0.0098 | 0.9756 ± 0.0020 | 0.9782 ± 0.009 | 0.9846 ± 0.0098 | |||
Hu-D | SW∞ (gwater/gxerogel) | 7.82 ± 1.95 | 4.19 ± 0.33 | 2.52 ± 0.07 | 17.2 ± 1.4 | 3.99 ± 0.96 | 2.79 ± 0.10 | ||
K × 103 (h−1) | 1.5 ± 0.7 | 6.4± 0.9 | 29 ± 4 | 0.39 ± 0.007 | 7.1 ± 0.9 | 21.6 ± 1.9 | |||
R2 | 0.9657 ± 0.0203 | 0.9788 ± 0.0072 | 0.9884 ± 0.0016 | 0.9814 ± 0.0032 | 0.9802 ± 0.0022 | 0.9898 ± 0.0020 | |||
Agave bagasse | AB | SW∞ (gwater/gxerogel) | 5.95 ± 0.41 | 4.54 ± 0.35 | |||||
K × 103 (h−1) | 4 ± 0.4 | 6.5 ± 0.7 | |||||||
R2 | 0.9724 ± 0.0076 | 0.9900 ± 0.0032 | |||||||
Commercial Wood | CW | SW∞ (gwater/gxerogel) | 4.35 ± 0.33 | 3.61 ± 0.31 | |||||
K × 103 (h−1) | 4.1 ± 0.09 | 9.1 ± 1 | |||||||
R2 | 0.9913 ± 0.0022 | 0.9911 ± 0.0041 |
Factors | Schott Model (t < 300 min) | Linear Regression 350 < t < 1700 | |||
---|---|---|---|---|---|
K | SW∞ | b | m | ||
A, B | pA | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 |
pB | p > 0.05 | p > 0.05 | p < 0.05 | p < 0.05 | |
pAB | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | |
A, C | pA | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 |
pC | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | |
pAC | p < 0.05 | p < 0.05 | p < 0.05 | p < 0.05 | |
B, C | pB | p > 0.05 | p > 0.05 | p < 0.05 | p > 0.05 |
pC | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 | |
pBC | p > 0.05 | p > 0.05 | p > 0.05 | p > 0.05 |
CNC Concentration (wt. %) | 0.1 | 1.0 | |||||||
---|---|---|---|---|---|---|---|---|---|
CNC Source | CNC ID | [NMBA] (wt.%) | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 | |
Slope Lineal Equation | |||||||||
Control Sample (Without CNC) | b | 13.6 ± 0.7 | 4.72 ± 0.24 | 4.19 ± 0.45 | 13.6 ± 0.7 | 4.72 ± 0.24 | 4.19 ± 0.45 | ||
m | 0.0139 ± 9.9 × 10−4 | 0.0032 ± 2.6 × 10−4 | 0.0032 ± 2.6 × 10−4 | 0.0139 ± 9.9 × 10−4 | 0.0032 ± 2.6 × 10−4 | 0.0032 ± 2.6 × 10−4 | |||
R2 | 0.9830 ± 0.032 | 0.9696 ± 0.049 | 0.9937 ±0.0031 | 0.9830 ± 0.0032 | 0.9696 ± 0.049 | 0.9937 ± 0.0031 | |||
Huizache | Hu-A | b | 10.2 ± 2.2 | 3.24 ± 0.14 | 2.14 ± 0.08 | 8.4 ± 1.5 | 2.78± 0.32 | 2.07 ± 0.14 | |
m | 0.0104 ± 5.3 × 10−4 | 0.0034 ± 1.9 × 10−4 | 0.0013 ± 2.5 × 10−4 | 0.0114 ± 1.2 × 10−3 | 0.0024 ± 1.7 × 10−4 | 0.0016 ± 1.3 × 10−4 | |||
R2 | 0.9881 ± 0.0077 | 0.9937 ± 0.0025 | 0.9287 ± 0.1197 | 0.9925 ± 0.0051 | 0.9803 ± 0.03 | 0.9897 ± 0.003 | |||
Hu-B | b | 9.70 ± 0.56 | 4.11 ± 0.27 | 2.24 ± 0.07 | 7.64 ± 0.81 | 2.95 ± 0.21 | 1.83 ± 0.29 | ||
m | 0.0125 ± 4.6 × 10−4 | 0.0032 ± 2.1 × 10−4 | 0.0104 ± 5.3 × 10−4 | 0.0105 ± 4.7 × 10−4 | 0.0032 ± 1.2 × 10−4 | 0.0015 ± 3.3 × 10−4 | |||
R2 | 0.9853 ± 0.011 | 0.9938 ± 0.0027 | 0.9881 ± 0.0077 | 0.9964 ± 0.0009 | 0.9865 ± 0.0072 | 0.9765 ± 0.02 | |||
Hu-C | b | 5.19 ± 0.57 | 1.99 ± 0.15 | 1.81 ± 0.18 | 6.15 ± 1.24 | 2.63 ± 0.12 | 1.94 ± 0.19 | ||
m | 0.0109 ± 8.5 × 10−4 | 0.0032 ± 3.4 × 10−4 | 0.0019 ± 2.1 × 10−4 | 0.009 ± 7.2 × 10−4 | 0.0029 ± 4.7 × 10−4 | 0.0022 ± 3.9 × 10−4 | |||
R2 | 0.9886 ± 0.0047 | 0.9917 ± 0.006 | 0.9881 ± 0.006 | 0.9963 ± 0.0025 | 0.9913 ± 0.0034 | 0.9870 ± 0.006 | |||
Hu-D | b | 9.21 ± 0.81 | 3.05 ± 0.13 | 2.15 ± 0.04 | 4.07 ± 0.78 | 2.66 ± 0.08 | 2.36 ± 0.08 | ||
m | 0.0137 ± 9.2 × 10−4 | 0.0034 ± 1.6 × 10−4 | 0.00104 ± 8.9 × 10−5 | 0.0087 ± 1.6 × 10−3 | 0.0035 ± 1.6 × 10−4 | 0.00108 ± 1.4 × 10−4 | |||
R2 | 0.9987 ± 0.0006 | 0.9900 ± 0.0016 | 0.9819 ± 0.0044 | 0.9982 ± 0.0013 | 0.9924 ± 0.0041 | 0.9814 ± 0.005 | |||
Agave bagasse | AB | b | 2.94 ± 0.20 | 2.64 ± 0.30 | |||||
m | 0.0028 ± 3.5 × 10−4 | 0.0022 ± 3.4 × 10−4 | |||||||
R2 | 0.9822 ± 0.006 | 0.9831 ± 0.01 | |||||||
Commercial Wood | CW | b | 4.56 ± 0.04 | 3.26 ± 0.29 | |||||
m | 0.0036 ± 3.3 × 10−4 | 0.0027 ± 1.1 × 10−4 | |||||||
R2 | 0.9810 ± 0.02 | 0.9844 ± 0.004 |
CCNC (wt. %) | 0.1 | 1 | |||||
---|---|---|---|---|---|---|---|
CNC Type | CNMBA (wt. %) | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 |
Control | 9.7 ± 1.8 | 10.5 ± 6.2 | 17.5 ± 7.2 | 9.7 ± 1.8 | 10.5 ± 6.2 | 17.5 ± 7.2 | |
Huizache | Hu-A | 4.8 ±1.8 | 13.1 ± 5.6 | 35.3 ± 7.3 | 6.6 ± 1.5 | 21.3 ± 1.7 | 28.7 ± 12.2 |
Hu-B | 8.8 ± 2.5 | 19.8 ± 3.6 | 36.6 ±8.7 | 13.9 ± 2.7 | 15.3 ± 4.1 | 29.1 ± 4.3 | |
Hu-C | 9.5 ± 5.1 | 15.3 ± 7.6 | 33.7 ± 16.4 | 6.8 ± 1.4 | 21.4 ± 11.3 | 21.8 ± 4.0 | |
Hu-D | 5.1 ± 1.7 | 15.8 ± 4.5 | 16.5 ± 1.9 | 7.2 ± 2.3 | 20.4 ± 7.6 | 29.6 ± 9.0 | |
Agave bagasse | 14.6 ± 8.5 | 17.4 ± 4.0 | |||||
Comm. Wood | 19.8 ± 9.7 | 25.6 ± 19.6 |
CCNC (wt. %) | 0.1 | 1 | |||||
---|---|---|---|---|---|---|---|
CNC Type | CNMBA (wt. %) | 0.1 | 0.5 | 1 | 0.1 | 0.5 | 1 |
Control | 5.8 ± 1.2 | 8.6 ± 2.4 | 19.3 ± 9.5 | 5.8 ± 1.2 | 8.6 ± 2.4 | 19.3 ± 9.5 | |
Huizache | Hu-A | 5.7 ± 1.6 | 10.3 ± 2.3 | 3.6 ± 3.0 | 9.4 ± 2.9 | 13.7 ± 1.4 | 18.4 ± 1.3 |
Hu-B | 5.9 ± 0.2 | 6.3 ± 4.3 | 17.2 ± 8.6 | 7.2 ± 1.7 | 8.8 ± 1.5 | 15.7 ± 4.4 | |
Hu-C | 3.9 ± 0.6 | 6.9 ± 3.7 | 17.8 ± 2.7 | 4.7 ± 0.6 | 13.1 ± 1.6 | 17.7 ± 2.1 | |
Hu-D | 5.9 ± 0.7 | 6.7 ± 2.9 | 9.0 ± 4.1 | 8.1 ± 1.6 | 12.3 ± 1.2 | 15.2 ± 5.9 | |
Agave bagasse | 11.0 ± 4.8 | 15.3 ± 3.3 | |||||
Comm. Wood | 16.1 ± 2.3 | 23.6 ± 5.8 |
Y (300 h) | Y (2000 h) | ||
---|---|---|---|
A, B | pA | p < 0.05 | p > 0.05 |
pB | p < 0.05 | p > 0.05 | |
pAB | p < 0.05 | p > 0.05 | |
A, C | pA | p < 0.05 | p < 0.05 |
pC | p < 0.05 | p > 0.05 | |
pAC | p < 0.05 | p > 0.05 | |
B, C | pB | p < 0.05 | p > 0.05 |
pC | p > 0.05 | p > 0.05 | |
pBC | p > 0.05 | p > 0.05 |
CNC Source | CNC ID | [H2SO4] | T (°C) | t (min) | Filter Size (μm) |
---|---|---|---|---|---|
Huizache | Hu-A | 62.5 | 50 | 55 | 1.6 |
Hu-B | 65 | 55 | 65 | 1.6 | |
Hu-C | 60 | 55 | 65 | 1.6 | |
Hu-D | 60 | 55 | 45 | 1.6 | |
Agave bagasse | AB | 63.5 | 44 | 130 | - |
Comm. Wood | CW | 64 | - | - | - |
CNC Type | [NMBA] (wt. %) | [CNC] (wt. %) |
---|---|---|
Control Sample | 0.1, 0.5 and 1 | 0 |
Hu-A | 0.1, 0.5 and 1 | 0.1 and 1 |
Hu-B | 0.1, 0.5 and 1 | 0.1 and 1 |
Hu-C | 0.1, 0.5 and 1 | 0.1 and 1 |
Hu-D | 0.1, 0.5 and 1 | 0.1 and 1 |
AB | 0.5 | 0.1 and 1 |
CW | 0.5 | 0.1 and 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Hermosillo, A.B.; Landázuri-Gómez, G.; Soltero-Martínez, J.F.A.; Gallardo-Sánchez, M.A.; Cortes-Ortega, J.A.; López-López, C.; Vargas-Radillo, J.J.; Torres-Rendón, J.G.; Canché-Escamilla, G.; García-Enriquez, S.; et al. Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache). Gels 2025, 11, 144. https://doi.org/10.3390/gels11020144
Navarro-Hermosillo AB, Landázuri-Gómez G, Soltero-Martínez JFA, Gallardo-Sánchez MA, Cortes-Ortega JA, López-López C, Vargas-Radillo JJ, Torres-Rendón JG, Canché-Escamilla G, García-Enriquez S, et al. Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache). Gels. 2025; 11(2):144. https://doi.org/10.3390/gels11020144
Chicago/Turabian StyleNavarro-Hermosillo, Alejandra B., Gabriel Landázuri-Gómez, J. Félix Armando Soltero-Martínez, Manuel Alberto Gallardo-Sánchez, Jorge Alberto Cortes-Ortega, Carmen López-López, J. Jesus Vargas-Radillo, José Guillermo Torres-Rendón, Gonzalo Canché-Escamilla, Salvador García-Enriquez, and et al. 2025. "Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache)" Gels 11, no. 2: 144. https://doi.org/10.3390/gels11020144
APA StyleNavarro-Hermosillo, A. B., Landázuri-Gómez, G., Soltero-Martínez, J. F. A., Gallardo-Sánchez, M. A., Cortes-Ortega, J. A., López-López, C., Vargas-Radillo, J. J., Torres-Rendón, J. G., Canché-Escamilla, G., García-Enriquez, S., & Macias-Balleza, E. R. (2025). Obtaining and Characterizing Poly(Acid Acrylic–co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache). Gels, 11(2), 144. https://doi.org/10.3390/gels11020144