Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of DNH
2.2. Swelling Rate, Resilience, and Morphology of Hydrogel
2.3. Cytocompatibility of DNH1
2.4. Wound Healing with DNH
3. Conclusions
4. Materials and Methods
4.1. Materials and Instrument
4.2. Synthesis of DNH
4.3. Characterization of Hydrogel
4.3.1. Determination of Oxidation Degree (OD) of OHA
4.3.2. Determination of OHA and HA-Furan Using FT-IR and 1H-NMR
4.3.3. Characterization of Mechanical Properties and Gelation Time
4.3.4. Swelling Properties of Hydrogels Under Different pH
4.3.5. Characterization of Resilience
4.3.6. Characterization of Morphology of Hydrogels
4.4. Cytocompatibility Testing of DNH1 In Vitro
4.5. Wound Healing Using DNH1
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DNH | Double network hydrogel |
HA | Hyaluronic acid |
ECM | Extracellular matrix |
HYH | Hydrazone hydrogel |
OHA | Oxidized hyaluronic acid |
ADH | Adipic dihydrazide |
DAH | Diels–Alder hydrogel |
HA-Furan | Hyaluronic acid with furan group |
Mal-PEG-Mal | Maleimide-PEG-maleimide |
References
- Farahani, M.; Shafiee, A. Wound Healing: From Passive to Smart Dressings. Adv. Healthc. Mater. 2021, 10, 2100477. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, H.; Chen, Y.; Guo, Y.; Yang, Z.; Li, H.; Liu, H. Mechanoactive Nanocomposite Hydrogel to Accelerate Wound Repair in Movable Parts. ACS Nano 2022, 16, 20044–20056. [Google Scholar] [CrossRef]
- Bakadia, B.M.; Qaed Ahmed, A.A.; Lamboni, L.; Shi, Z.; Mutu Mukole, B.; Zheng, R.; Pierre Mbang, M.; Zhang, B.; Gauthier, M.; Yang, G. Engineering Homologous Platelet-Rich Plasma, Platelet-Rich Plasma-Derived Exosomes, and Mesenchymal Stem Cell-Derived Exosomes-Based Dual-Crosslinked Hydrogels as Bioactive Diabetic Wound Dressings. Bioact. Mater. 2023, 28, 74–94. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A Functional Chitosan-Based Hydrogel as a Wound Dressing and Drug Delivery System in the Treatment of Wound Healing. RSC Adv. 2018, 8, 7533–7549. [Google Scholar] [CrossRef]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic Acid—Based Wound Dressings: A Review. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef]
- Sha, Q.; Wang, Y.; Zhu, Z.; Wang, H.; Qiu, H.; Niu, W.; Li, X.; Qian, J. A Hyaluronic Acid/Silk Fibroin/Poly-Dopamine-Coated Biomimetic Hydrogel Scaffold with Incorporated Neurotrophin-3 for Spinal Cord Injury Repair. Acta Biomater. 2023, 167, 219–233. [Google Scholar] [CrossRef]
- Mirjalili, F.; Mahmoodi, M. Controlled Release of Protein from Gelatin/Chitosan Hydrogel Containing Platelet-Rich Fibrin Encapsulated in Chitosan Nanoparticles for Accelerated Wound Healing in an Animal Model. Int. J. Biol. Macromol. 2023, 225, 588–604. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Huang, J.; Ren, K.; Zhu, Y.; Yang, S. Alginate: Microbial Production, Functionalization, and Biomedical Applications. Int. J. Biol. Macromol. 2023, 242, 125048. [Google Scholar] [CrossRef]
- Kong, F.; Mehwish, N.; Lee, B.H. Emerging Albumin Hydrogels as Personalized Biomaterials. Acta Biomater. 2023, 157, 67–90. [Google Scholar] [CrossRef]
- Nelson, D.W.; Gilbert, R.J. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv. Healthc. Mater. 2021, 10, 2101329. [Google Scholar] [CrossRef]
- Muir, V.G.; Burdick, J.A. Chemically Modified Biopolymers for the Formation of Biomedical Hydrogels. Chem. Rev. 2021, 121, 10908–10949. [Google Scholar] [CrossRef]
- Jha, A.K.; Hule, R.A.; Jiao, T.; Teller, S.S.; Clifton, R.J.; Duncan, R.L.; Pochan, D.J.; Jia, X. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks. Macromolecules 2009, 42, 537–546. [Google Scholar] [CrossRef]
- Fan, P.; Dong, Q.; Yang, J.; Chen, Y.; Yang, H.; Gu, S.; Xu, W.; Zhou, Y. Flexible Dual-Functionalized Hyaluronic Acid Hydrogel Adhesives Formed in Situ for Rapid Hemostasis. Carbohydr. Polym. 2023, 313, 120854. [Google Scholar] [CrossRef]
- Yang, R.; Liu, X.; Ren, Y.; Xue, W.; Liu, S.; Wang, P.; Zhao, M.; Xu, H.; Chi, B. Injectable Adaptive Self-Healing Hyaluronic Acid/Poly (γ-Glutamic Acid) Hydrogel for Cutaneous Wound Healing. Acta Biomater. 2021, 127, 102–115. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, X.; Yang, W.; Lin, C.; Tao, B.; Deng, Z.; Gao, P.; Yang, Y.; Cai, K. A pH-Responsive Hyaluronic Acid Hydrogel for Regulating the Inflammation and Remodeling of the ECM in Diabetic Wounds. J. Mater. Chem. B 2022, 10, 2875–2888. [Google Scholar] [CrossRef]
- Nonoyama, T.; Gong, J.P. Tough Double Network Hydrogel and Its Biomedical Applications. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 393–410. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Rikkers, M.; Mihajlovic, M.; Viola, M.; Schuiringa, G.; Ilochonwu, B.C.; Masereeuw, R.; Vonk, L.; Malda, J.; Ito, K.; et al. Viscoelastic Chondroitin Sulfate and Hyaluronic Acid Double-Network Hydrogels with Reversible Cross-Links. Biomacromolecules 2022, 23, 1350–1365. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zheng, J.; Liu, L.; Zhang, Q. Three-Dimensional Printing Self-Healing Dynamic/Photocrosslinking Gelatin-Hyaluronic Acid Double-Network Hydrogel for Tissue Engineering. ACS Omega 2022, 7, 12076–12088. [Google Scholar] [CrossRef]
- Nair, S.; Remya, N.S.; Remya, S.; Nair, P.D. A Biodegradable in Situ Injectable Hydrogel Based on Chitosan and Oxidized Hyaluronic Acid for Tissue Engineering Applications. Carbohydr. Polym. 2011, 85, 838–844. [Google Scholar] [CrossRef]
- Yu, F.; Cao, X.; Du, J.; Wang, G.; Chen, X. Multifunctional Hydrogel with Good Structure Integrity, Self-Healing, and Tissue-Adhesive Property Formed by Combining Diels–Alder Click Reaction and Acylhydrazone Bond. ACS Appl. Mater. Interfaces 2015, 7, 24023–24031. [Google Scholar] [CrossRef]
- Xie, X.; Lei, H.; Fan, D. Antibacterial Hydrogel with pH-Responsive Microcarriers of Slow-Release VEGF for Bacterial Infected Wounds Repair. J. Mater. Sci. Technol. 2023, 144, 198–212. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Y.; Wu, X.; Wang, G.; Ren, J.; Zhao, Y. Bioinspired Multifunctional Hybrid Hydrogel Promotes Wound Healing. Adv. Funct. Mater. 2018, 28, 1801386. [Google Scholar] [CrossRef]
- Schneider, L.A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on Wound-Healing: A New Perspective for Wound-Therapy? Arch. Dermatol. Res. 2007, 298, 413–420. [Google Scholar] [CrossRef]
- Bennison, L.R.; Miller, C.N.; Summers, R.J.; Minnis, A.M.B.; Sussman, G.; McGuiness, W. The pH of Wounds during Healing and Infection: A Descriptive Literature Review. Wound Pract. Res. J. Aust. Wound Manag. Assoc. 2017, 25, 63–69. [Google Scholar]
- Sonawane, S.J.; Kalhapure, R.S.; Govender, T. Hydrazone Linkages in pH Responsive Drug Delivery Systems. Eur. J. Pharm. Sci. 2017, 99, 45–65. [Google Scholar] [CrossRef]
- Tawagi, E.; Ung, T.; Cheng, H.-L.M.; Santerre, J.P. Arrhenius-Model-Based Degradable Oligourethane Hydrogels for Controlled Growth Factor Release. Acta Biomater. 2023, 166, 167–186. [Google Scholar] [CrossRef]
- Kirchhof, S.; Strasser, A.; Wittmann, H.-J.; Messmann, V.; Hammer, N.; Goepferich, A.M.; Brandl, F.P. New Insights into the Cross-Linking and Degradation Mechanism of Diels–Alder Hydrogels. J. Mater. Chem. B 2014, 3, 449–457. [Google Scholar] [CrossRef]
- Shi, J.; Yu, L.; Ding, J. PEG-Based Thermosensitive and Biodegradable Hydrogels. Acta Biomater. 2021, 128, 42–59. [Google Scholar] [CrossRef]
- Spiller, K.L.; Anfang, R.; Spiller, K.J.; Ng, J.; Nakazawa, K.R.; Daulton, J.W.; Vunjak-Novakovic, G. The Role of Macrophage Phenotype in Vascularization of Tissue Engineering Scaffolds. Biomaterials 2014, 35, 4477–4488. [Google Scholar] [CrossRef]
- Kuninaka, Y.; Ishida, Y.; Ishigami, A.; Nosaka, M.; Matsuki, J.; Yasuda, H.; Kofuna, A.; Kimura, A.; Furukawa, F.; Kondo, T. Macrophage Polarity and Wound Age Determination. Sci. Rep. 2022, 12, 20327. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Li, Z.; Li, G.; Zou, Y.; Li, X.; Gu, P.; Liu, J.; Bai, L.; Yan, H.; et al. Injectable Immunoregulatory Hydrogels Sequentially Drive Phenotypic Polarization of Macrophages for Infected Wound Healing. Bioact. Mater. 2024, 41, 193–206. [Google Scholar] [CrossRef]
- Nguyen, N.T.-P.; Nguyen, L.V.-H.; Tran, N.M.-P.; Nguyen, D.T.; Nguyen, T.N.-T.; Tran, H.A.; Dang, N.N.-T.; Vo, T.V.; Nguyen, T.-H. The Effect of Oxidation Degree and Volume Ratio of Components on Properties and Applications of in Situ Cross-Linking Hydrogels Based on Chitosan and Hyaluronic Acid. Mater. Sci. Eng. C 2019, 103, 109670. [Google Scholar] [CrossRef]
- França, C.G.; Plaza, T.; Naveas, N.; Andrade Santana, M.H.; Manso-Silván, M.; Recio, G.; Hernandez-Montelongo, J. Nanoporous Silicon Microparticles Embedded into Oxidized Hyaluronic Acid/Adipic Acid Dihydrazide Hydrogel for Enhanced Controlled Drug Delivery. Microporous Mesoporous Mater. 2021, 310, 110634. [Google Scholar] [CrossRef]
- Nimmo, C.M.; Owen, S.C.; Shoichet, M.S. Diels−Alder Click Cross-Linked Hyaluronic Acid Hydrogels for Tissue Engineering. Biomacromolecules 2011, 12, 824–830. [Google Scholar] [CrossRef]
- Ilochonwu, B.C.; Mihajlovic, M.; Maas-Bakker, R.F.; Rousou, C.; Tang, M.; Chen, M.; Hennink, W.E.; Vermonden, T. Hyaluronic Acid-PEG-Based Diels–Alder In Situ Forming Hydrogels for Sustained Intraocular Delivery of Bevacizumab. Biomacromolecules 2022, 23, 2914–2929. [Google Scholar] [CrossRef]
- Li, M.; Liang, Y.; He, J.; Zhang, H.; Guo, B. Two-Pronged Strategy of Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing to Accelerate Wound Closure and Wound Healing. Chem. Mater. 2020, 32, 9937–9953. [Google Scholar] [CrossRef]
Day 6 | Day 14 | |||
---|---|---|---|---|
Gauze | DNH1 | Gauze | DNH1 | |
Epidermis thickness (μm) | 77.33 ± 4.33 | 64.59 ± 32.12 | 47.98 ± 3.27 | 45.6 ± 3.83 |
Dermis thickness (μm) | 1198.99 ± 636.69 | 1126.83 ± 23.31 | 993.70 ± 90.29 | 1323.16 ± 654.28 |
Vessel number (-) | 116.5 ± 37.48 | 36.00 ± 21.21 | 75.50 ± 3.54 | 38.50 ± 2.12 |
CD68 (-) | 172 ± 8.49 | 106.5 ± 71.42 | 28.5 ± 10.61 | 24.50 ± 26.16 |
CD206 (-) | 234 ± 50.91 | 135 ± 94.75 | 19.50 ± 3.54 | 25.5 ± 13.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Zhou, Y.; Zhang, Y.; Hu, J.; Ikegami, Y.; Aishima, S.; Ijima, H. Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel. Gels 2025, 11, 266. https://doi.org/10.3390/gels11040266
Wu L, Zhou Y, Zhang Y, Hu J, Ikegami Y, Aishima S, Ijima H. Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel. Gels. 2025; 11(4):266. https://doi.org/10.3390/gels11040266
Chicago/Turabian StyleWu, Lichun, Yu Zhou, Yi Zhang, Jia Hu, Yasuhiro Ikegami, Shinichi Aishima, and Hiroyuki Ijima. 2025. "Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel" Gels 11, no. 4: 266. https://doi.org/10.3390/gels11040266
APA StyleWu, L., Zhou, Y., Zhang, Y., Hu, J., Ikegami, Y., Aishima, S., & Ijima, H. (2025). Fast Wound Healing with a New Functional Hyaluronic Acid Dual Network Hydrogel. Gels, 11(4), 266. https://doi.org/10.3390/gels11040266