Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering
Abstract
:1. Introduction
2. Biomaterials to Fabricate Anti-Adhesion Barriers
2.1. Natural Biopolymers in Adhesion
2.1.1. Proteins
Collagen
Gelatin
Fibrin
Silk Fibroin
Complex Proteins/Decellularized Extracellular Matrix (dECM)
2.1.2. Polysaccharides
Hyaluronic Acid
Carboxymethyl Cellulose (CMC)
Chitosan
Alginate
2.2. Synthetic Polymers
2.2.1. Biodegradable Polymers
Polycaprolactone (PCL)
Polyethylene Glycol (PEG)
Poly Lactic-Co-Glycolic Acid (PLGA)
2.2.2. Non-Degradable Polymers
Expanded Polytetrafluoroethylene (ePTFE)
Polypropylene (PP)
3. Elimination and Excretion Routes of Biomaterials
- Renal Excretion (Kidney): The kidneys efficiently filter water-soluble molecules below a certain size. Small polymer fragments, oligomers, or monomers can pass through the glomerular filter and are excreted in urine. For instance, the absorbable HA/CMC barrier Seprafilm breaks down into soluble fragments that are excreted primarily through the kidneys. Radiolabel studies showed that Seprafilm is completely cleared from the body within 28 days, mostly via urine [251]. Similarly, only low-molecular-weight HA fragments (<12 kDa) are able to pass the glomerular barrier—indeed, under normal physiology, only ~1–2% of HA is removed by the kidneys, limited to these small fragments [252]. Hydrophilic synthetic polymers can also be renally eliminated if sufficiently small: e.g., polyethylene glycol (PEG) chains below ~1–40 kDa are largely cleared in urine. In general, polymer degradation products under ~40 kDa (the exact threshold varies) tend toward renal elimination [253].
- Hepatic and Biliary Excretion (Liver): Larger polymer fragments that cannot be filtered by the kidney often require clearance via the liver. These may be taken up by hepatic Kupffer cells or by the mononuclear phagocyte system (MPS) in the liver and spleen, then excreted in bile into the feces. Natural macromolecules illustrate this route: the majority of high-molecular-weight HA produced in the body is captured and metabolized by the liver, with the liver sinusoidal endothelium and Kupffer cells clearing most circulating HA each day [252]. Only after enzymatic breakdown into smaller pieces can the metabolites be excreted. Molecular weight is a key factor: for PEG, studies have shown a shift toward hepatobiliary clearance for larger chains—PEG ~50 kDa and above results in increased uptake by Kupffer cells and higher biliary excretion. In fact, very large PEGs (>50 kDa) paradoxically show more liver clearance than mid-sized ones, likely because extremely large polymers are sequestered by phagocytes. Nonetheless, even for quite large polymers (up to ~200 kDa in some cases), urinary excretion can still play a major role [254]. Often, there is a dual pathway: the liver metabolizes or excretes what the kidney cannot, ensuring eventual clearance of the absorbable material.
- Respiratory Excretion (Metabolic): Many biodegradable polymers are ultimately broken down into basic metabolites that enter the body’s natural pathways. Polyesters like PLA or PLGA are classic examples—they hydrolyze into lactic acid and glycolic acid. Lactic acid can enter the normal metabolic routes (the citric acid cycle), being converted to CO2 and water. Glycolic acid can either be excreted in urine or further metabolized and then eliminated as CO2 and water [255]. Thus, a significant portion of PLA/PLGA-based barriers are eliminated via respiration (exhaled CO2) and water, rather than as solid polymer remnants. This route is essentially the body “burning off” the polymer fragments as fuel. Other biopolymers that break down into sugars or other metabolic intermediates follow a similar fate—e.g., oxidized cellulose degrades to glucose acid units that can be metabolized to CO2 and H2O, and collagen/gelatin break into amino acids that are reused or oxidized.
- Lymphatic Uptake: Although not an excretion route per se, it is important to note that large polymer fragments in the peritoneal cavity often first enter lymphatic circulation. The peritoneal cavity has lymphatic stomata that drain fluid and large particles to lymph nodes and the thoracic duct. For example, icodextrin (a starch-based polymer used in Adept® adhesion reduction solution) is too large for direct absorption into blood capillaries. Instead, when 4% icodextrin is left in the peritoneum, it is slowly transferred into systemic circulation by peritoneal lymphatic drainage [256]. Once in the bloodstream, enzymes (α-amylase) rapidly depolymerize icodextrin into smaller oligosaccharides, which are then eliminated via the kidneys. In essence, the lymphatics act as a bridge to get large polymers to organs (blood, liver) that can process and excrete them.
4. Common Biopolymeric Adhesion Barriers and Their Degradation
- Seprafilm® (HA/CMC)—a film of hyaluronic acid (HA) and carboxymethylcellulose; hydrates into a gel within hours and is fully resorbed in about a week [251].
- Interceed® (ORC)—an oxidized regenerated cellulose fabric; becomes gel-like and is absorbed over ~2–4 weeks, depending on the application site [265].
- SprayGel®/SprayShield®(Radio Systems Corporation, Knoxville, TN, USA) (PEG hydrogel)—a sprayable PEG-based synthetic gel that polymerizes on tissues and remains for ~5–7 days before degrading and absorbing [266].
- Hyaluronic acid gels (e.g., auto-crosslinked HA in Hyalobarrier®)—these form a viscous coating that gradually breaks down by enzymatic action over days to weeks depending on the concentration [267].
- Polymeric films (PLA/PLGA)—e.g., polylactide sheets or meshes used experimentally or in combination with meshes; these degrade by hydrolysis over 6-8 weeks, releasing lactic/glycolic acid monomers [268].
5. Conventional Fabrication Techniques for Anti-Adhesion Barrier Films
5.1. Gas Foaming
5.2. Freeze Drying
5.3. Porogen Leaching
5.4. Phase Separation
5.5. Melt Molding
6. Novel Fabrication Techniques for Anti-Adhesion Barrier Films
6.1. Electrospinning
6.2. Melt Electrowriting
6.3. Three-Dimensional Bioprinting
6.4. Layer-by-Layer Assembly (Multilayer Barrier Films)
7. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weibel, M.A.; Majno, G. Peritoneal adhesions and their relation to abdominal surgery: A postmortem study. Am. J. Surg. 1973, 126, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Lauder, C.I.; Garcea, G.; Strickland, A.; Maddern, G.J. Abdominal adhesion prevention: Still a sticky subject. Dig. Surg. 2010, 27, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, S.D.; Alkatout, I.; Dornhoefer, N.; Herrmann, J.; Klapdor, R.; Meinhold-Heerlein, I.; Meszaros, J.; Mustea, A.; Oppelt, P.; Wallwiener, M.; et al. Prevention of peritoneal adhesions after gynecological surgery: A systematic review. Arch. Gynecol. Obstet. 2024, 310, 655–672. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Hu, Y.; He, X.; Ling, W.; Yao, J.; Li, Z.; Wang, Q.; Li, L. Biomaterializing the advances in uterine tissue engineering. iScience 2022, 25, 105657. [Google Scholar] [CrossRef]
- Xu, J.; Fang, H.; Zheng, S.; Li, L.; Jiao, Z.; Wang, H.; Nie, Y.; Liu, T.; Song, K. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. Int. J. Biol. Macromol. 2021, 187, 840–849. [Google Scholar] [CrossRef]
- Fazel Anvari Yazdi, A.; Tahermanesh, K.; Ejlali, M.; Babaei-Ghazvini, A.; Acharya, B.; Badea, I.; MacPhee, D.J.; Chen, X. Comparative analysis of porcine-uterine decellularization for bioactive-molecule preservation and DNA removal. Front. Bioeng. Biotechnol. 2024, 12, 1418034. [Google Scholar] [CrossRef]
- Lv, X.; Liu, Y.; Song, S.; Tong, C.; Shi, X.; Zhao, Y.; Zhang, J.; Hou, M. Influence of chitosan oligosaccharide on the gelling and wound healing properties of injectable hydrogels based on carboxymethyl chitosan/alginate polyelectrolyte complexes. Carbohydr. Polym. 2019, 205, 312–321. [Google Scholar] [CrossRef]
- Alavi, M.; Nokhodchi, A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr. Polym. 2020, 227, 115349. [Google Scholar] [CrossRef]
- Babaei-Ghazvini, A.; Patel, R.; Vafakish, B.; Yazdi, A.F.A.; Acharya, B. Nanocellulose in targeted drug delivery: A review of modifications and synergistic applications. Int. J. Biol. Macromol. 2024, 278, 135200. [Google Scholar] [CrossRef]
- Naik, G.a.R.R.; Roy, A.A.; Mutalik, S.; Dhas, N. Unleashing the power of polymeric nanoparticles—Creative triumph against antibiotic resistance: A review. Int. J. Biol. Macromol. 2024, 278, 134977. [Google Scholar] [CrossRef]
- Subramaniam, A.; Sethuraman, S. Biomedical applications of nondegradable polymers. In Natural and Synthetic Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 301–308. [Google Scholar]
- Park, H.; Baek, S.; Kang, H.; Lee, D. Biomaterials to Prevent Post-Operative Adhesion. Materials 2020, 13, 3056. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, X.; Liu, B.; Yu, Y.; Sun, L.; Liu, T.; Wang, Y.; Ding, J.; Chen, X. Polymer materials for prevention of postoperative adhesion. Acta Biomater. 2017, 61, 21–40. [Google Scholar] [CrossRef]
- Chen, J.; Tang, X.; Wang, Z.; Perez, A.; Yao, B.; Huang, K.; Zhang, Y.; King, M.W. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng. Transl. Med. 2023, 8, e10565. [Google Scholar] [CrossRef]
- Liao, J.; Li, X.; Fan, Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact. Mater. 2023, 26, 387–412. [Google Scholar] [CrossRef]
- Kavic, S.M.; Kavic, S.M. Adhesions and adhesiolysis: The role of laparoscopy. JSLS 2002, 6, 99–109. [Google Scholar] [PubMed]
- Akhlaghi, S.; Ebrahimnia, M.; Niaki, D.S.; Solhi, M.; Rabbani, S.; Haeri, A. Recent advances in the preventative strategies for postoperative adhesions using biomaterial-based membranes and micro/nano-drug delivery systems. J. Drug Deliv. Sci. Technol. 2023, 85, 104539. [Google Scholar] [CrossRef]
- Tavakoli, M.; Labbaf, S.; Mirhaj, M.; Salehi, S.; Seifalian, A.M.; Firuzeh, M. Natural polymers in wound healing: From academic studies to commercial products. J. Appl. Polym. Sci. 2023, 140, e53910. [Google Scholar] [CrossRef]
- Satchanska, G.; Davidova, S.; Petrov, P.D. Natural and Synthetic Polymers for Biomedical and Environmental Applications. Polymers 2024, 16, 1159. [Google Scholar] [CrossRef]
- Heino, J. The collagen family members as cell adhesion proteins. Bioessays 2007, 29, 1001–1010. [Google Scholar] [CrossRef]
- Wolf, K.; Alexander, S.; Schacht, V.; Coussens, L.M.; von Andrian, U.H.; van Rheenen, J.; Deryugina, E.; Friedl, P. Collagen-based cell migration models in vitro and in vivo. In Proceedings of the Seminars in Cell & Developmental Biology, San Francisco, CA, USA, 23–27 July 2009; pp. 931–941. [Google Scholar]
- Chen, X.B.; Fazel Anvari-Yazdi, A.; Duan, X.; Zimmerling, A.; Gharraei, R.; Sharma, N.K.; Sweilem, S.; Ning, L. Biomaterials/bioinks and extrusion bioprinting. Bioact. Mater. 2023, 28, 511–536. [Google Scholar] [CrossRef]
- Schmidt, M.; Dornelles, R.; Mello, R.; Kubota, E.; Mazutti, M.; Kempka, A.; Demiate, I. Collagen extraction process. Int. Food Res. J. 2016, 23, 913. [Google Scholar]
- Silvipriya, K.; Kumar, K.K.; Bhat, A.; Kumar, B.D.; John, A. Collagen: Animal sources and biomedical application. J. Appl. Pharm. Sci. 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Salvatore, L.; Gallo, N.; Aiello, D.; Lunetti, P.; Barca, A.; Blasi, L.; Madaghiele, M.; Bettini, S.; Giancane, G.; Hasan, M. An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int. J. Biol. Macromol. 2020, 154, 291–306. [Google Scholar] [CrossRef]
- Gallo, N.; Natali, M.L.; Sannino, A.; Salvatore, L. An Overview of the Use of Equine Collagen as Emerging Material for Biomedical Applications. J. Funct. Biomater. 2020, 11, 79. [Google Scholar] [CrossRef]
- Araújo, Í.B.d.S.; Bezerra, T.K.A.; Nascimento, E.S.d.; Gadelha, C.A.d.A.; Santi-Gadelha, T.; Madruga, M.S. Optimal conditions for obtaining collagen from chicken feet and its characterization. Food Sci. Technol. 2018, 38, 167–173. [Google Scholar] [CrossRef]
- Rittié, L. Type I collagen purification from rat tail tendons. Fibros. Methods Protoc. 2017, 1627, 287–308. [Google Scholar]
- Matinong, A.M.E.; Pickering, K.L.; Waterland, M.R.; Chisti, Y.; Haverkamp, R.G. Gelatin and Collagen from Sheepskin. Polymers 2024, 16, 1563. [Google Scholar] [CrossRef]
- Amirthalingam, S.; Hwang, N.S. Collagen-based biomaterials for tissue engineering applications. In Natural Biopolymers in Drug Delivery and Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 541–571. [Google Scholar]
- Ahmed, M.; Verma, A.K.; Patel, R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustain. Chem. Pharm. 2020, 18, 100315. [Google Scholar] [CrossRef]
- Chen, J.; Gao, K.; Liu, S.; Wang, S.; Elango, J.; Bao, B.; Dong, J.; Liu, N.; Wu, W. Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process In Vivo. Mar. Drugs 2019, 17, 33. [Google Scholar] [CrossRef]
- Harris, M.; Potgieter, J.; Ishfaq, K.; Shahzad, M. Developments for collagen hydrolysate in biological, biochemical, and biomedical domains: A comprehensive review. Materials 2021, 14, 2806. [Google Scholar] [CrossRef]
- Lee, K.B.; Chon, S.J.; Kim, S.; Kim, D.Y.; Park, C.W.; Shin, S.J.; Kim, S.M.; Lee, K.H.; Ji, Y.I. Using Type I Collagen Gel to Prevent Postoperative Intrauterine Adhesion: A Multicenter Retrospective Study. J. Clin. Med. 2023, 12, 3764. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Lin, X.; Pan, Y.; Zheng, X.; Shi, L.; Zhang, Y.; Ma, L.; Gao, C.; Zhang, S. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Acta Biomater. 2019, 92, 160–171. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar] [CrossRef]
- Seror, J.; Stern, M.; Zarka, R.; Orr, N. The Potential Use of Novel Plant-Derived Recombinant Human Collagen in Aesthetic Medicine. Plast. Reconstr. Surg. 2021, 148, 32S–38S. [Google Scholar] [CrossRef]
- Yang, C.; Hillas, P.J.; Báez, J.A.; Nokelainen, M.; Balan, J.; Tang, J.; Spiro, R.; Polarek, J.W. The application of recombinant human collagen in tissue engineering. BioDrugs 2004, 18, 103–119. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Raines, R.T. Collagen-based biomaterials for wound healing. Biopolymers 2014, 101, 821–833. [Google Scholar] [CrossRef]
- Shilo, S.; Roth, S.; Amzel, T.; Harel-Adar, T.; Tamir, E.; Grynspan, F.; Shoseyov, O. Cutaneous wound healing after treatment with plant-derived human recombinant collagen flowable gel. Tissue Eng. Part A 2013, 19, 1519–1526. [Google Scholar] [CrossRef]
- Marques, C.; Diogo, G.; Pina, S.; Oliveira, J.; Silva, T.; Reis, R. Collagen-based bioinks for hard tissue engineering applications: A comprehensive review. J. Mater. Sci. Mater. Med. 2019, 30, 1–12. [Google Scholar] [CrossRef]
- Sharma, S.; Rai, V.K.; Narang, R.K.; Markandeywar, T.S. Collagen-based formulations for wound healing: A literature review. Life Sci. 2022, 290, 120096. [Google Scholar] [CrossRef]
- Xu, Q.; Torres, J.E.; Hakim, M.; Babiak, P.M.; Pal, P.; Battistoni, C.M.; Nguyen, M.; Panitch, A.; Solorio, L.; Liu, J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R Rep. 2021, 146, 100641. [Google Scholar] [CrossRef]
- Nashchekina, Y.; Konson, V.; Sirotkina, M.Y.; Nashchekin, A. Structure and Stability of Composite Gels Based on Collagen and Carboxymethylcellulose. Tech. Phys. 2024, 69, 343–348. [Google Scholar] [CrossRef]
- Northrop, J.H. Comparative hydrolysis of gelatin by pepsin, trypsin, acid, and alkali. J. General Physiol. 1921, 4, 57. [Google Scholar] [CrossRef] [PubMed]
- Dille, M.; Haug, I.; Draget, K. Gelatin and collagen. In Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1073–1097. [Google Scholar]
- Hafidz, R.; Yaakob, C.; Amin, I.; Noorfaizan, A. Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 2011, 18, 787–791. [Google Scholar]
- Ibrahim, A.; Kamel, W.H.; Soliman, M. Efficacy of gelatin sponge in the prevention of post-surgical intra-abdominal adhesion in a rat model. Res. Vet. Sci. 2022, 152, 26–33. [Google Scholar] [CrossRef]
- Ozamoto, Y.; Horii, T.; Morita, S.; Tsujimoto, H.; Oe, Y.; Minato, H.; Ueda, J.; Ichikawa, H.; Kawauchi, A.; Hagiwara, A.; et al. Physical and biological properties of a novel anti-adhesive punctate uneven gelatin film. PLoS ONE 2025, 20, e0314159. [Google Scholar] [CrossRef]
- Jaipan, P.; Nguyen, A.; Narayan, R.J. Gelatin-based hydrogels for biomedical applications. Mrs Commun. 2017, 7, 416–426. [Google Scholar] [CrossRef]
- Salahuddin, B.; Wang, S.; Sangian, D.; Aziz, S.; Gu, Q. Hybrid gelatin hydrogels in nanomedicine applications. ACS Appl. Bio Mater. 2021, 4, 2886–2906. [Google Scholar] [CrossRef]
- Horii, T.; Tsujimoto, H.; Miyamoto, H.; Yamanaka, K.; Tanaka, S.; Torii, H.; Ozamoto, Y.; Takamori, H.; Nakamachi, E.; Ikada, Y. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 689–696. [Google Scholar] [CrossRef]
- Ullm, S.; Krüger, A.; Tondera, C.; Gebauer, T.P.; Neffe, A.T.; Lendlein, A.; Jung, F.; Pietzsch, J. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties. Biomaterials 2014, 35, 9755–9766. [Google Scholar] [CrossRef]
- Echave, M.C.; Burgo, L.S.; Pedraz, J.L.; Orive, G. Gelatin as biomaterial for tissue engineering. Curr. Pharm. Des. 2017, 23, 3567–3584. [Google Scholar] [CrossRef]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng. Part B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Alipal, J.; Pu’Ad, N.M.; Lee, T.; Nayan, N.; Sahari, N.; Basri, H.; Idris, M.; Abdullah, H. A review of gelatin: Properties, sources, process, applications, and commercialisation. Mater. Today Proc. 2021, 42, 240–250. [Google Scholar] [CrossRef]
- Mugnaini, G.; Gelli, R.; Mori, L.; Bonini, M. How to cross-link gelatin: The effect of glutaraldehyde and glyceraldehyde on the hydrogel properties. ACS Appl. Polym. Mater. 2023, 5, 9192–9202. [Google Scholar] [CrossRef]
- Su, K.; Wang, C. Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 2015, 37, 2139–2145. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Nikoo, M.; Boran, G.; Zhou, P.; Regenstein, J.M. Collagen and gelatin. Annu. Rev. Food Sci. Technol. 2015, 6, 527–557. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Tondera, C.; Hauser, S.; Braune, S.; Görs, J.; Roch, T.; Klopfleisch, R.; Neffe, A.; Lendlein, A.; Pietzsch, J. Immunocompatibility and non-thrombogenicity of gelatin-based hydrogels. Clin. Hemorheol. Microcirc. 2021, 77, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Kaith, B.S. A review on chitosan-gelatin nanocomposites: Synthesis, characterization and biomedical applications. React. Funct. Polym. 2022, 179, 105362. [Google Scholar] [CrossRef]
- Olsen, D.; Yang, C.; Bodo, M.; Chang, R.; Leigh, S.; Baez, J.; Carmichael, D.; Perälä, M.; Hämäläinen, E.-R.; Jarvinen, M. Recombinant collagen and gelatin for drug delivery. Adv. Drug Deliv. Rev. 2003, 55, 1547–1567. [Google Scholar] [CrossRef]
- Vaghasiya, K.; Ray, E.; Singh, R.; Jadhav, K.; Sharma, A.; Khan, R.; Katare, O.P.; Verma, R.K. Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Mater. Sci. Eng. C 2021, 123, 112027. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Matesanz, A.; Gallardo, A.; Reinecke, H.; Jorcano, J.L.; Acedo, P.; Velasco, D.; Elvira, C. Technological advances in fibrin for tissue engineering. J. Tissue Eng. 2023, 14, 20417314231190288. [Google Scholar] [CrossRef]
- Weisel, J.W. Fibrinogen and Fibrin. In Advances in Protein Chemistry; Academic Press: Cambridge, MA, USA, 2005; Volume 70, pp. 247–299. [Google Scholar]
- Zhmurov, A.; Brown, A.E.; Litvinov, R.I.; Dima, R.I.; Weisel, J.W.; Barsegov, V. Mechanism of fibrin(ogen) forced unfolding. Structure 2011, 19, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Nohuz, E.; Darcha, C.; Moreno, W.; Tamburro, S.; Yanez, M.; Mulliez, A.; Grizard, G.; Mage, G.; Canis, M. Efficiency of TachoSil® to prevent postsurgical adhesion development on laparoscopic rat model. Gynecol. Surg. 2009, 6, 323–329. [Google Scholar] [CrossRef]
- Mao, L.; Wang, X.; Sun, Y.; Yang, M.; Chen, X.; Cui, L.; Bai, W. Platelet-rich fibrin improves repair and regeneration of damaged endometrium in rats. Front. Endocrinol. 2023, 14, 1154958. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.A.; Dare, E.V.; Hincke, M. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev. 2008, 14, 199–215. [Google Scholar] [CrossRef]
- Bayer, I.S. Advances in Fibrin-Based Materials in Wound Repair: A Review. Molecules 2022, 27, 4504. [Google Scholar] [CrossRef]
- Martin-Piedra, M.A.; Carmona, G.; Campos, F.; Carriel, V.; Fernández-González, A.; Campos, A.; Cuende, N.; Garzon, I.; Gacto, P.; Alaminos, M. Histological assessment of nanostructured fibrin-agarose skin substitutes grafted in burnt patients. A time-course study. Bioeng. Transl. Med. 2023, 8, e10572. [Google Scholar] [CrossRef]
- Osada, H.; Minai, M.; Yoshida, T.; Satoh, K. Use of Fibrin Adhesive to Reduce Post-Surgical Adhesion Reformation in Rabbits. J. Int. Med. Res. 1999, 27, 242–246. [Google Scholar] [CrossRef]
- Pereira, R.V.S.; EzEldeen, M.; Ugarte-Berzal, E.; Martens, E.; Malengier-Devlies, B.; Vandooren, J.; Vranckx, J.J.; Matthys, P.; Opdenakker, G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front. Immunol. 2023, 14, 1170153. [Google Scholar] [CrossRef]
- Osada, H.; Tanaka, H.; Fujii, T.; Tsunoda, I.; Yoshida, T.; Satoh, K. Clinical Evaluation of a Haemostatic and Anti-Adhesion Preparation Used to Prevent Post-Surgical Adhesion. J. Int. Med. Res. 1999, 27, 247–252. [Google Scholar] [CrossRef]
- Simo, K.A.; Hanna, E.M.; Imagawa, D.K.; Iannitti, D.A. Hemostatic Agents in Hepatobiliary and Pancreas Surgery: A Review of the Literature and Critical Evaluation of a Novel Carrier-Bound Fibrin Sealant (TachoSil). Int. Sch. Res. Not. 2012, 2012, 729086. [Google Scholar] [CrossRef]
- Wiseman, D.M.; Meidler, R.; Lyahovetsky, Y.; Kurman, E.; Horn, S.; Nur, I. Evaluation of a fibrin preparation containing tranexamic acid (Adhexil) in a rabbit uterine horn model of adhesions with and without bleeding and in a model with two surgical loci. Fertil. Steril. 2010, 93, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Kitade, M.; Kikuchi, I.; Shimanuki, H.; Kumakiri, J.; Kinoshita, K. Adhesion-prevention effects of fibrin sealants after laparoscopic myomectomy as determined by second-look laparoscopy: A prospective, randomized, controlled study. J. Reprod. Med. 2005, 50, 571–577. [Google Scholar] [PubMed]
- Hense, D.; Strube, O.I. Thrombin-Free Fibrillogenesis and Gelation of Fibrinogen Triggered by Magnesium Sulfate. Gels 2023, 9, 892. [Google Scholar] [CrossRef]
- Li, S.; Dan, X.; Chen, H.; Li, T.; Liu, B.; Ju, Y.; Li, Y.; Lei, L.; Fan, X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact. Mater. 2024, 40, 597–623. [Google Scholar] [CrossRef]
- Popovic, G.; Kirby, N.C.; Dement, T.C.; Peterson, K.M.; Daub, C.E.; Belcher, H.A.; Guthold, M.; Offenbacher, A.R.; Hudson, N.E. Development of Transient Recombinant Expression and Affinity Chromatography Systems for Human Fibrinogen. Int. J. Mol. Sci. 2022, 23, 1054. [Google Scholar] [CrossRef]
- Kundu, B.; Rajkhowa, R.; Kundu, S.C.; Wang, X. Silk fibroin biomaterials for tissue regenerations. Adv. Drug Deliv. Rev. 2013, 65, 457–470. [Google Scholar] [CrossRef]
- Konar, S.; Guha, R.; Kundu, B.; Nandi, S.; Ghosh, T.K.; Kundu, S.C.; Konar, A.; Hazra, S. Silk fibroin hydrogel as physical barrier for prevention of post hernia adhesion. Hernia 2017, 21, 125–137. [Google Scholar] [CrossRef]
- Wongpinyochit, T.; Johnston, B.F.; Seib, F.P. Degradation behavior of silk nanoparticles—Enzyme responsiveness. ACS Biomater. Sci. Eng. 2018, 4, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-Z.; Confalonieri, F.; Medina, N.; Zivanovic, Y.; Esnault, C.; Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R. Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 2000, 28, 2413–2419. [Google Scholar] [CrossRef]
- Asakura, T. Structure of silk I (Bombyx mori silk fibroin before spinning)-type II β-turn, not α-helix. Molecules 2021, 26, 3706. [Google Scholar] [CrossRef]
- Zhou, C.-Z.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z.-G.; Janin, J. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins Struct. Funct. Bioinform. 2001, 44, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Asakura, T.; Ito, T.; Okudaira, M.; Kameda, T. Structure of Alanine and Glycine Residues of Samia cynthia ricini Silk Fibers Studied with Solid-State 15N and 13C NMR. Macromolecules 1999, 32, 4940–4946. [Google Scholar] [CrossRef]
- Fedič, R.; Žurovec, M.; Sehnal, F. Correlation between Fibroin Amino Acid Sequence and Physical Silk Properties *. J. Biol. Chem. 2003, 278, 35255–35264. [Google Scholar] [CrossRef]
- Kambe, Y.; Kawano, Y.; Sasaki, M.; Koga, M.; Fujita, N.; Kameda, T. Enhanced Biodegradation of Silk Fibroin Hydrogel for Preventing Postoperative Adhesion. ACS Biomater. Sci. Eng. 2024, 10, 7441–7450. [Google Scholar] [CrossRef]
- Rockwood, D.N.; Preda, R.C.; Yücel, T.; Wang, X.; Lovett, M.L.; Kaplan, D.L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Quiceno, N.; Álvarez-López, C.; Restrepo-Osorio, A. Structural and thermal properties of silk fibroin films obtained from cocoon and waste silk fibers as raw materials. Procedia Eng. 2017, 200, 384–388. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, F.; Chen, Y.; Yu, T.; Lou, D.; Guo, Y.; Li, P.; Wang, Z.; Ran, H. Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Sci. Rep. 2017, 7, 11913. [Google Scholar] [CrossRef]
- Park, A.R.; Park, Y.-H.; Kim, H.J.; Kim, M.-K.; Kim, S.-G.; Kweon, H.; Kundu, S.C. Tri-layered silk fibroin and poly-ɛ-caprolactone small diameter vascular grafts tested in vitro and in vivo. Macromol. Res. 2015, 23, 924–936. [Google Scholar] [CrossRef]
- Karahaliloğlu, Z.; Ercan, B.; Denkbaş, E.B.; Webster, T.J. Nanofeatured silk fibroin membranes for dermal wound healing applications. J. Biomed. Mater. Res. Part A 2015, 103, 135–144. [Google Scholar] [CrossRef]
- Kaushik, S.; Thungon, P.D.; Goswami, P. Silk Fibroin: An Emerging Biocompatible Material for Application of Enzymes and Whole Cells in Bioelectronics and Bioanalytical Sciences. ACS Biomater. Sci. Eng. 2020, 6, 4337–4355. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, C.H.; Lee, O.-J.; Lee, J.-M.; Kim, J.W.; Park, Y.H.; Ki, C.S. Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats. J. Biomed. Mater. Res. Part A 2012, 100, 3287–3295. [Google Scholar] [CrossRef]
- Horan, R.L.; Antle, K.; Collette, A.L.; Wang, Y.; Huang, J.; Moreau, J.E.; Volloch, V.; Kaplan, D.L.; Altman, G.H. In vitro degradation of silk fibroin. Biomaterials 2005, 26, 3385–3393. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ogiso, M.; Minoura, N. Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 2003, 24, 357–365. [Google Scholar] [CrossRef]
- McInnes, A.D.; Moser, M.A.J.; Chen, X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J. Funct. Biomater. 2022, 13, 240. [Google Scholar] [CrossRef]
- Ma, J.; Zhan, H.; Li, W.; Zhang, L.; Yun, F.; Wu, R.; Lin, J.; Li, Y. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater. Res. 2021, 25, 40. [Google Scholar] [CrossRef]
- Luo, P.; Huang, R.; Wu, Y.; Liu, X.; Shan, Z.; Gong, L.; Deng, S.; Liu, H.; Fang, J.; Wu, S.; et al. Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM) for wound healing through immunomodulation. Bioact. Mater. 2023, 28, 95–111. [Google Scholar] [CrossRef]
- Choudhury, D.; Yee, M.; Sheng, Z.L.J.; Amirul, A.; Naing, M.W. Decellularization systems and devices: State-of-the-art. Acta Biomater. 2020, 115, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhou, Y.; Sun, Y.; Ji, T.; Dai, H. Transplantation of decellularized and lyophilized amniotic membrane inhibits endometrial fibrosis by regulating connective tissue growth factor and tissue inhibitor of matrix metalloproteinase-2. Exp. Ther. Med. 2021, 22, 968. [Google Scholar] [CrossRef] [PubMed]
- Pati, F.; Jang, J.; Ha, D.-H.; Won Kim, S.; Rhie, J.-W.; Shim, J.-H.; Kim, D.-H.; Cho, D.-W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 2014, 5, 3935. [Google Scholar] [CrossRef]
- Sani, M.; Hosseinie, R.; Latifi, M.; Shadi, M.; Razmkhah, M.; Salmannejad, M.; Parsaei, H.; Talaei-Khozani, T. Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. Biomater. Adv. 2022, 139, 213019. [Google Scholar] [CrossRef]
- Kamaraj, M.; Giri, P.S.; Mahapatra, S.; Pati, F.; Rath, S.N. Bioengineering strategies for 3D bioprinting of tubular construct using tissue-specific decellularized extracellular matrix. Int. J. Biol. Macromol. 2022, 223, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Peng, H.; Sun, L.; Tong, J.; Cui, C.; Bai, Z.; Yan, J.; Qin, D.; Liu, Y.; Wang, J.; et al. The application of small intestinal submucosa in tissue regeneration. Mater. Today Bio 2024, 26, 101032. [Google Scholar] [CrossRef] [PubMed]
- Yiu, F.; Lee, V.; Sahoo, A.; Shiba, J.; Garcia-Soto, N.; Aninwene II, G.E.; Pandey, V.; Wohlschlegel, J.; Sturm, R.M. Assessing the effects of bladder decellularization protocols on extracellular matrix (ECM) structure, mechanics, and biology. J. Pediatr. Urol. 2024, 20, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, Y.; Gong, D.; Xia, C.; Liu, X.; Xu, Z. Efficient decellularization for bovine pericardium with extracellular matrix preservation and good biocompatibility. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 768–776. [Google Scholar] [CrossRef]
- Daryabari, S.S.; Fendereski, K.; Ghorbani, F.; Dehnavi, M.; Shafikhani, Y.; Omranipour, A.; Zeraatian-Nejad Davani, S.; Majidi Zolbin, M.; Tavangar, S.M.; Kajbafzadeh, A.-M. Whole-organ decellularization of the human uterus and in vivo application of the bio-scaffolds in animal models. J. Assist. Reprod. Genet. 2022, 39, 1237–1247. [Google Scholar] [CrossRef]
- Milan, P.B.; Amini, N.; Joghataei, M.T.; Ebrahimi, L.; Amoupour, M.; Sarveazad, A.; Kargozar, S.; Mozafari, M. Decellularized human amniotic membrane: From animal models to clinical trials. Methods 2020, 171, 11–19. [Google Scholar] [CrossRef]
- Moffat, D.; Ye, K.; Jin, S. Decellularization for the retention of tissue niches. J. Tissue Eng. 2022, 13, 20417314221101151. [Google Scholar] [CrossRef]
- Procházková, A.; Poláchová, M.; Dítě, J.; Netuková, M.; Studený, P. Chemical, Physical, and Biological Corneal Decellularization Methods: A Review of Literature. J. Ophthalmol. 2024, 2024, 1191462. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, V.; Gangwar, A.K.; Khangembam, S.D.; Singh, N.K.; Raghuvanshi, P.D.S.; Shrivastava, S.; Saxena, S.; Sangeetha, P.; Udehiya, R.K.; et al. 2-Decellularization and characterization methods. In Natural Biomaterials for Tissue Engineering; Kumar, N., Saxena, S., Kumar, V., Gangwar, A.K., Mathew, D.D., Shrivastava, S., Singh, N.K., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 17–46. [Google Scholar]
- Sykes, M. Developing pig-to-human organ transplants. Science 2022, 378, 135–136. [Google Scholar] [CrossRef]
- Li, C.; Yao, L.; He, F.; Hua, K. Transplantation of acellular amniotic membrane seeded with adipose-derived mesenchymal stem cells in a rat model of intrauterine adhesion. Ann. Med. Surg. 2024, 86, 4463–4474. [Google Scholar] [CrossRef]
- Sionkowska, A.; Gadomska, M.; Musiał, K.; Piątek, J. Hyaluronic Acid as a Component of Natural Polymer Blends for Biomedical Applications: A Review. Molecules 2020, 25, 4035. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.P.; Burns, E.L.; Accomando, B.; Mian, S.; Holmdahl, L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 2012, 9, 237–245. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, Z.; Peng, H.; Liu, P.; Wang, Y.; Li, J.; Lu, J.; Wang, Y.; Xia, T.; Peng, L. High density cellulose nanofibril assembly leads to upgraded enzymatic and chemical catalysis of fermentable sugars, cellulose nanocrystals and cellulase production by precisely engineering cellulose synthase complexes. Green Chem. 2023, 25, 1096–1106. [Google Scholar] [CrossRef]
- Song, W.; Lee, C.; Jeong, H.; Kim, S.; Hwang, N.S. Sprayable anti-adhesive hydrogel for peritoneal macrophage scavenging in post-surgical applications. Nat. Commun. 2024, 15, 8364. [Google Scholar] [CrossRef]
- Torres-de la Roche, L.A.; Bérard, V.; de Wilde, M.S.; Devassy, R.; Wallwiener, M.; De Wilde, R.L. Chemically Modified Hyaluronic Acid for Prevention of Post-Surgical Adhesions: New Aspects of Gel Barriers Physical Profiles. J. Clin. Med. 2022, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan in tissue injury and repair. Annu. Rev. Cell Dev. Biol. 2007, 23, 435–461. [Google Scholar] [CrossRef]
- Jiang, D.; Liang, J.; Noble, P.W. Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 2011, 91, 221–264. [Google Scholar] [CrossRef]
- Siebert, T.; Moersdorf, G.; Colberg, T. Laparoscopic application of sodium hyaluronate–carboxymethylcellulose barrier in abdominopelvic surgery: A Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Systematic Review Protocols–compliant systematic review and meta-analysis. Surgery 2024, 175, 1358–1367. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-Y.; Lee, S.R.; Kim, S.K.; Joo, J.K.; Lee, W.S.; Shin, J.-H.; Cho, S.; Park, J.C.; Kim, S.H. A New Thermo-Responsive Hyaluronic Acid Sol-Gel to Prevent Intrauterine Adhesions after Hysteroscopic Surgery: A Randomized, Non-Inferiority Trial. Yonsei Med. J. 2020, 61, 868–874. [Google Scholar] [CrossRef]
- Adamyan, L.; Pivazyan, L.; Krylova, E.; Kurbatova, K.; Tarlakyan, V.; Stepanian, A. Hyaluronic acid in the prevention of adhesions after gynecological surgery: Systematic review and meta-analysis. J. Endometr. Uterine Disord. 2024, 6, 100070. [Google Scholar] [CrossRef]
- Heinze, T.; Pfeiffer, K. Studies on the synthesis and characterization of carboxymethylcellulose. Die Angew. Makromol. Chem. 1999, 266, 37–45. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; et al. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Lima, N.F.; Maciel, G.M.; Lima, N.P.; Fernandes, I.d.A.A.; Haminiuk, C.W.I. Bacterial cellulose in cosmetic innovation: A review. Int. J. Biol. Macromol. 2024, 275, 133396. [Google Scholar] [CrossRef]
- Urbina, L.; Corcuera, M.Á.; Gabilondo, N.; Eceiza, A.; Retegi, A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose 2021, 28, 8229–8253. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, S.; Li, J.; Wang, B.; Jin, M.; Liang, Q.; Zhang, D.; Han, Z.; Deng, L.; Qu, X. Insights into hierarchical structure–property–application relationships of advanced bacterial cellulose materials. Adv. Funct. Mater. 2023, 33, 2214327. [Google Scholar] [CrossRef]
- Butnariu, M.; Flavius, A.I. General information about cellulose. J. Biotechnol. Bioprocess. 2022, 3, 1–5. [Google Scholar]
- Najihah, A.; Hassan, M.Z.; Ismail, Z. Current trend on preparation, characterization and biomedical applications of natural polysaccharide-based nanomaterial reinforcement hydrogels: A review. Int. J. Biol. Macromol. 2024, 271, 132411. [Google Scholar] [CrossRef]
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500. [Google Scholar] [CrossRef]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Mutlu, N.; Boccaccini, A.R. Polymeric hydrogel systems as emerging biomaterial platforms to enable hemostasis and wound healing. Adv. Healthc. Mater. 2020, 9, 2000905. [Google Scholar] [CrossRef]
- Mayes, S.M.; Davis, J.; Scott, J.; Aguilar, V.; Zawko, S.A.; Swinnea, S.; Peterson, D.L.; Hardy, J.G.; Schmidt, C.E. Polysaccharide-based films for the prevention of unwanted postoperative adhesions at biological interfaces. Acta Biomater. 2020, 106, 92–101. [Google Scholar] [CrossRef]
- Mohite, P.; Asane, G.; Rebello, N.; Munde, S.; Ade, N.; Boban, T.; Damiri, F.; Singh, S. Polymeric Hydrogel Sponges for Wound Healing Applications: A Comprehensive Review. Regen. Eng. Transl. Med. 2024, 10, 416–437. [Google Scholar] [CrossRef]
- DSouza, A.A.; Amiji, M.M. Dual-Polymer Carboxymethyl Cellulose and Poly (Ethylene Oxide)-Based Gels for the Prevention of Postsurgical Adhesions. J. Biomed. Mater. Res. Part A 2025, 113, e37852. [Google Scholar] [CrossRef]
- Kurhade, R.R.; Shaikh, M.S.; Nagulwar, V.; Kale, M.A. Advancements in carboxymethyl cellulose (CMC) modifications and their diverse biomedical applications: A comprehensive review. Int. J. Polym. Mater. Polym. Biomater. 2024, 74, 1043–1067. [Google Scholar] [CrossRef]
- Kaur, P.; Bohidar, H.B.; Nisbet, D.R.; Pfeffer, F.M.; Rifai, A.; Williams, R.; Agrawal, R. Waste to high-value products: The performance and potential of carboxymethylcellulose hydrogels via the circular economy. Cellulose 2023, 30, 2713–2730. [Google Scholar] [CrossRef]
- Swilem, A.E.; Oyama, T.G.; Oyama, K.; Kimura, A.; Taguchi, M. Development of carboxymethyl cellulose/gelatin hybrid hydrogels via radiation-induced cross-linking as novel anti-adhesion barriers. Polym. Degrad. Stab. 2022, 197, 109856. [Google Scholar] [CrossRef]
- An, J.M.; Shahriar, S.M.S.; Hasan, M.N.; Cho, S.; Lee, Y.K. Carboxymethyl Cellulose, Pluronic, and Pullulan-Based Compositions Efficiently Enhance Antiadhesion and Tissue Regeneration Properties without Using Any Drug Molecules. ACS Appl. Mater. Interfaces 2021, 13, 15992–16006. [Google Scholar] [CrossRef]
- Keller, J.D. Sodium carboxymethylcellulose (CMC). In Food Hydrocolloids; CRC Press: Boca Raton, FL, USA, 2020; pp. 43–109. [Google Scholar]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef]
- Bai, Q.; Gao, Q.; Hu, F.; Zheng, C.; Chen, W.; Sun, N.; Liu, J.; Zhang, Y.; Wu, X.; Lu, T. Chitosan and hyaluronic-based hydrogels could promote the infected wound healing. Int. J. Biol. Macromol. 2023, 232, 123271. [Google Scholar] [CrossRef]
- Kumirska, J.; Czerwicka, M.; Kaczyński, Z.; Bychowska, A.; Brzozowski, K.; Thöming, J.; Stepnowski, P. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Mar. Drugs 2010, 8, 1567–1636. [Google Scholar] [CrossRef]
- Roberts, G. The Road is long. Adv. Chitin Sci. 2007, 10, 3–10. [Google Scholar]
- Yadav, M.; Goswami, P.; Paritosh, K.; Kumar, M.; Pareek, N.; Vivekanand, V. Seafood waste: A source for preparation of commercially employable chitin/chitosan materials. Bioresour. Bioprocess. 2019, 6, 8. [Google Scholar] [CrossRef]
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Lv, H.; Xu, R.; Xie, X.; Liang, Q.; Yuan, W.; Xia, Y.; Ao, X.; Tan, S.; Zhao, L.; Wu, J.; et al. Injectable, degradable, and mechanically adaptive hydrogel induced by L-serine and allyl-functionalized chitosan with platelet-rich plasma for treating intrauterine adhesions. Acta Biomater. 2024, 184, 144–155. [Google Scholar] [CrossRef]
- Zheng, X.; Huang, R.; Yin, L.; Yao, M.; Chu, J.; Yang, F.; Dong, Y.; Zhao, M.; Ma, T. Injectable antioxidant hyaluronan/chitosan hydrogel as a platelet-rich plasma and stem cell carrier to promote endometrial regeneration and fertility restoration. Acta Biomater. 2025, 195, 201–215. [Google Scholar] [CrossRef]
- Chandran, R.; Williams, L.; Hung, A.; Nowlin, K.; LaJeunesse, D. SEM characterization of anatomical variation in chitin organization in insect and arthropod cuticles. Micron 2016, 82, 74–85. [Google Scholar] [CrossRef]
- Kumari, S.; Kishor, R. Chapter 1—Chitin and chitosan: Origin, properties, and applications. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–33. [Google Scholar]
- Blackwell, J. Structure of β-chitin or parallel chain systems of poly-β-(1→4)-N-acetyl-D-glucosamine. Biopolym. Orig. Res. Biomol. 1969, 7, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Bernaerts, K.V.; Dodi, G.; Shavandi, A. Chitooligosaccharides for wound healing biomaterials engineering. Mater. Sci. Eng. C 2020, 117, 111266. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Lin, W.; Lin, J. Effects of pH, ionic strength, and type of anion on the rheological properties of chitosan solutions. Acta Polym. 1994, 45, 41–46. [Google Scholar] [CrossRef]
- Pohling, J.; Hawboldt, K.; Dave, D. Comprehensive review on pre-treatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications. Green Chem. 2022, 24, 6790–6809. [Google Scholar] [CrossRef]
- Ma, J.; Zhong, L.; Peng, X.; Xu, Y.; Sun, R. Functional chitosan-based materials for biological applications. Curr. Med. Chem. 2020, 27, 4660–4672. [Google Scholar] [CrossRef]
- Raihan, M.J. Exploring the Properties of Chitin for Promoting Tissue Engineering and Repair; South Dakota State University: Brookings, SD, USA, 2020. [Google Scholar]
- Park, J.-Y. Functional Nanofiber and Nanocoating for Biological Application. Ph.D. Thesis, Keio University, Tokyo, Japan, 2018. [Google Scholar]
- Garcinuño, S.; Aranaz, I.; Civera, C.; Arias, C.; Acosta, N. Evaluating non-conventional chitosan sources for controlled release of risperidone. Polymers 2022, 14, 1355. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.C.; RAVI KUMAR, M.N. An overview on chitin and chitosan applications with an emphasis on controlled drug release formulations. J. Macromol. Sci. Part C Polym. Rev. 2000, 40, 273–308. [Google Scholar] [CrossRef]
- Li, B.; Wu, W. Review on adaptation between biomaterials function of chitosan and its structure. Med. Res. 2019, 3, 190013. [Google Scholar] [CrossRef]
- Hasan, S.; Boddu, V.M.; Viswanath, D.S.; Ghosh, T.K. The Structural Difference Between Chitin and Chitosan. In Chitin and Chitosan: Science and Engineering; Springer International Publishing: Cham, Switzerland, 2022; pp. 79–102. [Google Scholar]
- Hamedi, H.; Moradi, S.; Hudson, S.M.; Tonelli, A.E.; King, M.W. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr. Polym. 2022, 282, 119100. [Google Scholar] [CrossRef]
- Ravishankar, K.; Dhamodharan, R. Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. React. Funct. Polym. 2020, 149, 104517. [Google Scholar] [CrossRef]
- Peng, W.; Li, D.; Dai, K.; Wang, Y.; Song, P.; Li, H.; Tang, P.; Zhang, Z.; Li, Z.; Zhou, Y. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int. J. Biol. Macromol. 2022, 208, 400–408. [Google Scholar] [CrossRef]
- Li, J.; Tian, X.; Hua, T.; Fu, J.; Koo, M.; Chan, W.; Poon, T. Chitosan natural polymer material for improving antibacterial properties of textiles. ACS Appl. Bio Mater. 2021, 4, 4014–4038. [Google Scholar] [CrossRef] [PubMed]
- Movaffagh, J.; Bazzaz, B.S.F.; Taherzadeh, Z.; Hashemi, M.; Moghaddam, A.S.; Abbas Tabatabaee, S.; Azizzadeh, M.; Jirofti, N. Evaluation of wound-healing efficiency of a functional Chitosan/Aloe vera hydrogel on the improvement of re-epithelialization in full thickness wound model of rat. J. Tissue Viability 2022, 31, 649–656. [Google Scholar] [CrossRef]
- Li, H.; Wang, F. Core-shell chitosan microsphere with antimicrobial and vascularized functions for promoting skin wound healing. Mater. Des. 2021, 204, 109683. [Google Scholar] [CrossRef]
- Yu, Z.; Min, Y.; Ouyang, Q.; Fu, Y.; Mao, Y.; Xiang, S.; Hu, X.; Jiang, L. Study on an Injectable Chitosan–Lignin/Poloxamer Hydrogel Loaded with Platelet-Rich Plasma for Intrauterine Adhesion Treatment. Polymers 2025, 17, 474. [Google Scholar] [CrossRef]
- Singh Chandel, A.K.; Ohta, S.; Taniguchi, M.; Yoshida, H.; Tanaka, D.; Omichi, K.; Shimizu, A.; Isaji, M.; Hasegawa, K.; Ito, T. Balance of antiperitoneal adhesion, hemostasis, and operability of compressed bilayer ultrapure alginate sponges. Biomater. Adv. 2022, 137, 212825. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Wang, H.; Liu, Y.; Yang, M.; Zeng, H.; Han, Q. Evaluation of the effectiveness of alginate-based hydrogels in preventing peritoneal adhesions. Regen. Biomater. 2023, 10, rbad017. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, Z.; Wang, F.; Liu, L.; Wei, R.; Zhang, M. Preparation of self-regulating/anti-adhesive hydrogels and their ability to promote healing in burn wounds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1471–1482. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.; Kim, J.A.; Park, T.H. Prevention of collagen hydrogel contraction using polydopamine-coating and alginate outer shell increases cell contractile force. Biomater. Adv. 2022, 136, 212780. [Google Scholar] [CrossRef] [PubMed]
- Qamar, S.; Karim, S.; Aslam, S.; Jahangeer, M.; Nelofer, R.; Nadeem, A.A.; Qamar, S.A.; Jesionowski, T.; Bilal, M. Alginate-based bio-nanohybrids with unique properties for biomedical applications. Starch-Stärke 2024, 76, 2200100. [Google Scholar] [CrossRef]
- Seidi, F.; Khodadadi Yazdi, M.; Jouyandeh, M.; Dominic, M.; Naeim, H.; Nezhad, M.N.; Bagheri, B.; Habibzadeh, S.; Zarrintaj, P.; Saeb, M.R.; et al. Chitosan-based blends for biomedical applications. Int. J. Biol. Macromol. 2021, 183, 1818–1850. [Google Scholar] [CrossRef]
- Azarpira, N.; Kaviani, M.; Sarvestani, F.S. Incorporation of VEGF-and bFGF-loaded alginate oxide particles in acellular collagen-alginate composite hydrogel to promote angiogenesis. Tissue Cell 2021, 72, 101539. [Google Scholar] [CrossRef]
- Jing, H.; Huang, X.; Du, X.; Mo, L.; Ma, C.; Wang, H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr. Polym. 2022, 278, 118993. [Google Scholar] [CrossRef]
- Hu, T.; Lo, A.C. Collagen–alginate composite hydrogel: Application in tissue engineering and biomedical sciences. Polymers 2021, 13, 1852. [Google Scholar] [CrossRef]
- Smith, A.M.; Senior, J.J. Alginate Hydrogels with Tuneable Properties. In Tunable Hydrogels: Smart Materials for Biomedical Applications; Lavrentieva, A., Pepelanova, I., Seliktar, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 37–61. [Google Scholar]
- Hu, C.; Lu, W.; Mata, A.; Nishinari, K.; Fang, Y. Ions-induced gelation of alginate: Mechanisms and applications. Int. J. Biol. Macromol. 2021, 177, 578–588. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Huang, J.; Ren, K.; Zhu, Y.; Yang, S. Alginate: Microbial production, functionalization, and biomedical applications. Int. J. Biol. Macromol. 2023, 242, 125048. [Google Scholar] [CrossRef] [PubMed]
- Clementi, F. Alginate production by Azotobacter vinelandii. Crit. Rev. Biotechnol. 1997, 17, 327–361. [Google Scholar] [CrossRef] [PubMed]
- Aravamudhan, A.; Ramos, D.M.; Nada, A.A.; Kumbar, S.G. Natural polymers: Polysaccharides and their derivatives for biomedical applications. In Natural and Synthetic Biomedical Polymers; Elsevier: Amsterdam, The Netherlands, 2014; pp. 67–89. [Google Scholar]
- Smith, A.M.; Senior, J.J. Alginate hydrogels with tuneable properties. Tunable Hydrogels Smart Mater. Biomed. Appl. 2021, 178, 37–61. [Google Scholar]
- Vajda, J.; Vihar, B.; Ćurić, L.Č.; Maver, U.; Vesenjak, M.; Dubrovski, P.D.; Milojević, M. Sr2+ vs. Ca2+ as post-processing ionic crosslinkers: Implications for 3D bioprinting of polysaccharide hydrogels in tissue engineering. J. Mater. Res. Technol. 2023, 23, 1805–1820. [Google Scholar] [CrossRef]
- Sarker, M.; Izadifar, M.; Schreyer, D.; Chen, X. Influence of ionic crosslinkers (Ca2+/Ba2+/Zn2+) on the mechanical and biological properties of 3D Bioplotted Hydrogel Scaffolds. J. Biomater. Sci. Polym. Ed. 2018, 29, 1126–1154. [Google Scholar] [CrossRef] [PubMed]
- Malektaj, H.; Drozdov, A.D.; deClaville Christiansen, J. Mechanical properties of alginate hydrogels cross-linked with multivalent cations. Polymers 2023, 15, 3012. [Google Scholar] [CrossRef]
- Trujillo, S.; Seow, M.; Lueckgen, A.; Salmeron-Sanchez, M.; Cipitria, A. Dynamic mechanical control of alginate-fibronectin hydrogels with dual crosslinking: Covalent and ionic. Polymers 2021, 13, 433. [Google Scholar] [CrossRef]
- Forysenkova, A.A.; Konovalova, M.V.; Fadeeva, I.V.; Antonova, O.S.; Kotsareva, O.D.; Slonskaya, T.K.; Rau, J.V.; Svirshchevskaya, E.V. Polyvinylpyrrolidone–Alginate Film Barriers for Abdominal Surgery: Anti-Adhesion Effect in Murine Model. Materials 2023, 16, 5532. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef]
- Zimmerling, A.; Yazdanpanah, Z.; Cooper, D.M.L.; Johnston, J.D.; Chen, X. 3D printing PCL/nHA bone scaffolds: Exploring the influence of material synthesis techniques. Biomater. Res. 2021, 25, 3. [Google Scholar] [CrossRef]
- Mudoi, M.P.; Sinha, S. Biodegradable polymer-based natural fiber composites. In Natural Fiber Composites; CRC Press: Boca Raton, FL, USA, 2022; pp. 279–324. [Google Scholar]
- Dalton, M.; Ebrahimi, F.; Xu, H.; Gong, K.; Fehrenbach, G.; Fuenmayor, E.; Murphy, E.J.; Major, I. The influence of the molecular weight of poly (ethylene oxide) on the hydrolytic degradation and physical properties of polycaprolactone binary blends. Macromol 2023, 3, 431–450. [Google Scholar] [CrossRef]
- Ferrari, M.; Cirisano, F.; Morán, M.C. Mammalian cell behavior on hydrophobic substrates: Influence of surface properties. Colloids Interfaces 2019, 3, 48. [Google Scholar] [CrossRef]
- Peña, J.; Corrales, T.; Izquierdo-Barba, I.; Doadrio, A.L.; Vallet-Regí, M. Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids. Polym. Degrad. Stab. 2006, 91, 1424–1432. [Google Scholar] [CrossRef]
- Lykins, W.R.; Bernards, D.A.; Schlesinger, E.B.; Wisniewski, K.; Desai, T.A. Tuning polycaprolactone degradation for long acting implantables. Polymer 2022, 262, 125473. [Google Scholar] [CrossRef]
- Pacharra, S.; McMahon, S.; Duffy, P.; Basnett, P.; Yu, W.; Seisel, S.; Stervbo, U.; Babel, N.; Roy, I.; Viebahn, R.; et al. Cytocompatibility Evaluation of a Novel Series of PEG-Functionalized Lactide-Caprolactone Copolymer Biomaterials for Cardiovascular Applications. Front. Bioeng. Biotechnol. 2020, 8, 991. [Google Scholar] [CrossRef]
- Shahverdi, M.; Seifi, S.; Akbari, A.; Mohammadi, K.; Shamloo, A.; Movahhedy, M.R. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application. Sci. Rep. 2022, 12, 19935. [Google Scholar] [CrossRef]
- Roach, P.; Parker, T.; Gadegaard, N.; Alexander, M. Surface strategies for control of neuronal cell adhesion: A review. Surf. Sci. Rep. 2010, 65, 145–173. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Ketabat, F.; Gomez-Picos, P.; Raquin, A.; Fazel Anvari-Yazdi, A.; Eames, B.F.; Johnston, J.D.; Cooper, D.M.L.; Chen, X. 3D printed PCL/nHAp scaffolds: Influence of scaffold structural parameters on osteoblast performance in vitro. Nano Sel. 2023, 4, 537–550. [Google Scholar] [CrossRef]
- Mateos-Timoneda, M.A. 8-Polymers for bone repair. In Bone Repair Biomaterials; Planell, J.A., Best, S.M., Lacroix, D., Merolli, A., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 231–251. [Google Scholar]
- Yang, D.L.; Faraz, F.; Wang, J.X.; Radacsi, N. Combination of 3D printing and electrospinning techniques for biofabrication. Adv. Mater. Technol. 2022, 7, 2101309. [Google Scholar] [CrossRef]
- Koleske, J. Blends containing poly (ɛ-caprolactone) and related polymers. In Polymer Blends; Elsevier: Amsterdam, The Netherlands, 1978; pp. 369–389. [Google Scholar]
- Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018, 29, 863–893. [Google Scholar] [CrossRef]
- Bailon, P.; Won, C.-Y. PEG-modified biopharmaceuticals. Expert Opin. Drug Deliv. 2009, 6, 1–16. [Google Scholar] [CrossRef]
- Zhu, J. Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef]
- Yang, B.; Gong, C.; Qian, Z.; Zhao, X.; Li, Z.; Qi, X.; Zhou, S.; Zhong, Q.; Luo, F.; Wei, Y. Prevention of post-surgical abdominal adhesions by a novel biodegradable thermosensitive PECE hydrogel. BMC Biotechnol. 2010, 10, 65. [Google Scholar] [CrossRef]
- Chandel, A.K.S.; Shimizu, A.; Hasegawa, K.; Ito, T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol. Biosci. 2021, 21, 2000395. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Beasock, D.; Fessler, A.; Szebeni, J.; Ljubimova, J.Y.; Afonin, K.A.; Dobrovolskaia, M.A. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv. Drug Deliv. Rev. 2022, 180, 114079. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; De Fail, A.J.; Rubin, J.P.; Chu, C.R.; Marra, K.G. Novel multiarm PEG-based hydrogels for tissue engineering. J. Biomed. Mater. Res. A 2010, 92, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Leslie John Ray, F. PEGylation and BioPEGylation of Polyhydroxyalkanoates: Synthesis, Characterisation and Applications. In Biopolymers; Magdy, E., Ed.; IntechOpen: Rijeka, Croatia, 2010; p. Ch. 12. [Google Scholar]
- Zheng, X.; Bao, Y.; Huang, A.; Yu, L.; Qin, G. Temperature dependence of thermophysical properties of polyethylene glycol in solid/liquid phase change region. J. Chem. Thermodyn. 2023, 180, 107022. [Google Scholar] [CrossRef]
- Carboué, Q.; Fadlallah, S.; Lopez, M.; Allais, F. Progress in degradation behavior of most common types of functionalized polymers: A review. Macromol. Rapid Commun. 2022, 43, 2200254. [Google Scholar] [CrossRef]
- D’souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef]
- Allègre, L.; Le Teuff, I.; Leprince, S.; Warembourg, S.; Taillades, H.; Garric, X.; Letouzey, V.; Huberlant, S. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model. PLoS ONE 2018, 13, e0202285. [Google Scholar] [CrossRef]
- Browning, M.B.; Cereceres, S.N.; Luong, P.T.; Cosgriff-Hernandez, E.M. Determination of the in vivo degradation mechanism of PEGDA hydrogels. J. Biomed. Mater. Res. A 2014, 102, 4244–4251. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, J.; Jordan, R.; Luxenhofer, R. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s. Biomaterials 2014, 35, 4848–4861. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dong, C.; Wei, K.; Yao, Y.; Feng, Q.; Zhang, K.; Han, F.; Mak, A.F.-T.; Li, B.; Bian, L. Supramolecular hydrogels cross-linked by preassembled host–guest PEG cross-linkers resist excessive, ultrafast, and non-resting cyclic compression. NPG Asia Mater. 2018, 10, 788–799. [Google Scholar] [CrossRef]
- Kowalczuk, K.; Wegner, V.D.; Mosig, A.S.; Schacher, F.H. Tailoring the Degradation Time of Polycationic PEG-Based Hydrogels toward Dynamic Cell Culture Matrices. ACS Appl. Bio Mater. 2024, 7, 2402–2412. [Google Scholar] [CrossRef]
- Hakim Khalili, M.; Zhang, R.; Wilson, S.; Goel, S.; Impey, S.A.; Aria, A.I. Additive Manufacturing and Physicomechanical Characteristics of PEGDA Hydrogels: Recent Advances and Perspective for Tissue Engineering. Polymers 2023, 15, 2341. [Google Scholar] [CrossRef]
- Alexander, A.; Khan, J.; Saraf, S.; Saraf, S. Polyethylene glycol (PEG)–Poly (N-isopropylacrylamide)(PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2014, 88, 575–585. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Progress Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Niu, L.; Feng, C.; Shen, C.; Wang, B.; Zhang, X. PLGA/PLCA casting and PLGA/PDPA electrospinning bilayer film for prevention of postoperative adhesion. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 2030–2039. [Google Scholar] [CrossRef]
- Vlachopoulos, A.; Karlioti, G.; Balla, E.; Daniilidis, V.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Christodoulou, E.; Koumentakou, I.; Karavas, E. Poly (lactic acid)-based microparticles for drug delivery applications: An overview of recent advances. Pharmaceutics 2022, 14, 359. [Google Scholar] [CrossRef]
- Jin, S.; Xia, X.; Huang, J.; Yuan, C.; Zuo, Y.; Li, Y.; Li, J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021, 127, 56–79. [Google Scholar] [CrossRef]
- Kırımlıoğlu, G.Y. History, introduction, and properties of PLGA as a drug delivery carrier. In Poly (Lactic-Co-Glycolic Acid)(PLGA) Nanoparticles for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–25. [Google Scholar]
- Robin, B.; Albert, C.; Beladjine, M.; Legrand, F.-X.; Geiger, S.; Moine, L.; Nicolas, V.; Canette, A.; Trichet, M.; Tsapis, N. Tuning morphology of Pickering emulsions stabilised by biodegradable PLGA nanoparticles: How PLGA characteristics influence emulsion properties. J. Colloid Interface Sci. 2021, 595, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Fan, R.; Quan, J.; Cheng, Y.; Wang, S.; Zhang, H.; Zheng, A.; Song, S. Intracranial In Situ Thermosensitive Hydrogel Delivery of Temozolomide Accomplished by PLGA–PEG–PLGA Triblock Copolymer Blending for GBM Treatment. Polymers 2022, 14, 3368. [Google Scholar] [CrossRef]
- Machatschek, R.; Lendlein, A. Fundamental insights in PLGA degradation from thin film studies. J. Control. Release 2020, 319, 276–284. [Google Scholar] [CrossRef]
- Ramchandani, M.; Pankaskie, M.; Robinson, D. The influence of manufacturing procedure on the degradation of poly(lactide-co-glycolide) 85:15 and 50:50 implants. J. Control. Release 1997, 43, 161–173. [Google Scholar] [CrossRef]
- Hiep, N.T.; Lee, B.-T. Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility. J. Mater. Sci. Mater. Med. 2010, 21, 1969–1978. [Google Scholar] [CrossRef] [PubMed]
- Rahman, C.V.; Kuhn, G.; White, L.J.; Kirby, G.T.; Varghese, O.P.; McLaren, J.S.; Cox, H.C.; Rose, F.R.; Müller, R.; Hilborn, J. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties. J. Biomed. Mater. Res. Part B Appl. Biomater. 2013, 101, 648–655. [Google Scholar] [CrossRef]
- Yang, J.; Zeng, H.; Luo, Y.; Chen, Y.; Wang, M.; Wu, C.; Hu, P. Recent Applications of PLGA in Drug Delivery Systems. Polymers 2024, 16, 2606. [Google Scholar] [CrossRef]
- Shin, Y.C.; Yang, W.J.; Lee, J.H.; Oh, J.W.; Kim, T.W.; Park, J.C.; Hyon, S.H.; Han, D.W. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions. Int. J. Nanomed. 2014, 9, 4067–4078. [Google Scholar] [CrossRef]
- Liang, K.; Ding, C.; Li, J.; Yao, X.; Yu, J.; Wu, H.; Chen, L.; Zhang, M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv. Healthc. Mater. 2024, 13, 2303506. [Google Scholar] [CrossRef]
- Roina, Y.; Auber, F.; Hocquet, D.; Herlem, G. ePTFE-based biomedical devices: An overview of surgical efficiency. J. Biomed. Mater. Res. Part B Appl. Biomater. 2022, 110, 302–320. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, Y.; Xu, M.; Huang, Q.; Cheng, J.; Yu, S.; Zhang, Y.; Xiao, C. PTFE porous membrane technology: A comprehensive review. J. Membr. Sci. 2022, 664, 121115. [Google Scholar] [CrossRef]
- Minale, C.; Nikol, S.; Hollweg, G.; MITTERMAYER, C.; MESSMER, B.J. Clinical Experience with Expanded Polytetrafluoroethylene Gore-Tex® Surgical Membrane for Pericardial Closure: A Study of 110 Cases. J. Card. Surg. 1988, 3, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Fatehi Hassanabad, A.; Zarzycki, A.N.; Jeon, K.; Dundas, J.A.; Vasanthan, V.; Deniset, J.F.; Fedak, P.W. Prevention of post-operative adhesions: A comprehensive review of present and emerging strategies. Biomolecules 2021, 11, 1027. [Google Scholar] [CrossRef]
- Seifalian, A.; Basma, Z.; Digesu, A.; Khullar, V. Polypropylene Pelvic Mesh: What Went Wrong and What Will Be of the Future? Biomedicines 2023, 11, 741. [Google Scholar] [CrossRef]
- Davim, J.P. Biomedical Composites: Materials, Manufacturing and Engineering; Walter de Gruyter: Berlin, Germany, 2013; Volume 2. [Google Scholar]
- Patel, H.; Ostergard, D.R.; Sternschuss, G. Polypropylene mesh and the host response. Int. Urogynecology J. 2012, 23, 669–679. [Google Scholar] [CrossRef]
- Saha, T.; Wang, X.; Padhye, R.; Houshyar, S. A review of recent developments of polypropylene surgical mesh for hernia repair. OpenNano 2022, 7, 100046. [Google Scholar] [CrossRef]
- Tennyson, L.; Rytel, M.; Palcsey, S.; Meyn, L.; Liang, R.; Moalli, P. Characterization of the T-cell response to polypropylene mesh in women with complications. Am. J. Obstet. Gynecol. 2019, 220, 187.e1–187.e8. [Google Scholar] [CrossRef] [PubMed]
- Jacob, D.A.; Schug-Paß, C.; Sommerer, F.; Tannapfel, A.; Lippert, H.; Köckerling, F. Comparison of a lightweight polypropylene mesh (Optilene® LP) and a large-pore knitted PTFE mesh (GORE® INFINIT® mesh)—Biocompatibility in a standardized endoscopic extraperitoneal hernia model. Langenbeck’s Arch. Surg. 2012, 397, 283–289. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Z.; Lu, S.; Zhang, T.; Zhou, N.; Ren, P.; Wang, F.; Yang, Y.; Ji, Z. Assembled anti-adhesion polypropylene mesh with self-fixable and degradable in situ mussel-inspired hydrogel coating for abdominal wall defect repair. Biomater. Sci. 2018, 6, 3030–3041. [Google Scholar] [CrossRef]
- Shoureshi, P.S.; Lee, W.; Kobashi, K.C.; Sajadi, K.P. Media coverage of the 2019 United States Food and Drug Administration ordered withdrawal of vaginal mesh products for pelvic organ prolapse. Int. Urogynecology J. 2021, 32, 375–379. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Urogynecologic Surgical Mesh Implants. Available online: https://www.fda.gov/medical-devices/implants-and-prosthetics/urogynecologic-surgical-mesh-implants (accessed on 17 June 2019).
- Burns, J.W.; Colt, M.J.; Burgees, L.S.; Skinner, K.C. Preclinical evaluation of Seprafilm bioresorbable membrane. Eur. J. Surg. Suppl. 1997, 577, 40–48. [Google Scholar]
- Jin, C.; Zong, Y. The role of hyaluronan in renal cell carcinoma. Front. Immunol. 2023, 14, 1127828. [Google Scholar] [CrossRef] [PubMed]
- Pelham, R.W.; Nix, L.C.; Chavira, R.E.; Cleveland, M.V.; Stetson, P. Clinical trial: Single- and multiple-dose pharmacokinetics of polyethylene glycol (PEG-3350) in healthy young and elderly subjects. Aliment. Pharmacol. Ther. 2008, 28, 256–265. [Google Scholar] [CrossRef]
- Webster, R.; Didier, E.; Harris, P.; Siegel, N.; Stadler, J.; Tilbury, L.; Smith, D. PEGylated Proteins: Evaluation of Their Safety in the Absence of Definitive Metabolism Studies. Drug Metab. Dispos. 2007, 35, 9–16. [Google Scholar] [CrossRef]
- Kranz, H.; Ubrich, N.; Maincent, P.; Bodmeier, R. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. J. Pharm. Sci. 2000, 89, 1558–1566. [Google Scholar] [CrossRef]
- Di Zerega, G.; Verco, S.; Young, P.; Kettel, M.; Kobak, W.; Martin, D.; Sanfilippo, J.; Peers, E.; Scrimgeour, A.; Brown, C. A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution in the reduction of adhesions following laparoscopic gynaecological surgery. Human Reprod. 2002, 17, 1031–1038. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Li, Y.; Zhang, C.-J.; Zhang, Y.-Y.; Cao, X.-H.; Zhang, X.-H. Synthesis of high-molecular-weight poly(ε-caprolactone) via heterogeneous zinc-cobalt(III) double metal cyanide complex. Giant 2020, 3, 100030. [Google Scholar] [CrossRef]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef]
- Zeng, W.; Liu, Y.; Shu, L.; Guo, Y.; Wang, L.; Liang, Z. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses. Biotechnol. J. 2024, 19, e2300614. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegradation of poly (vinyl alcohol) based materials. Progress Polym. Sci. 2003, 28, 963–1014. [Google Scholar] [CrossRef]
- Kar, M.; Chourasiya, Y.; Maheshwari, R.; Tekade, R.K. Chapter 2—Current Developments in Excipient Science: Implication of Quantitative Selection of Each Excipient in Product Development. In Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 29–83. [Google Scholar]
- Mochizuki, S.; Kano, A.; Shimada, N.; Maruyama, A. Uptake of Enzymatically-Digested Hyaluronan by Liver Endothelial Cells in Vivo and in Vitro. J. Biomater. Sci. Polym. Ed. 2009, 20, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Snetkov, P.; Zakharova, K.; Morozkina, S.; Olekhnovich, R.; Uspenskaya, M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Pharmaceuticals 2020, 12, 1800. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Yadav, H.; Shah, V.G.; Shah, G.; Dhaka, G. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review. J. Clin. Diagn. Res. 2015, 9, Ze21–Ze25. [Google Scholar] [CrossRef]
- Linsky, C.B.; Diamond, M.P.; Cunningham, T.; Constantine, B.; DeCherney, A.H.; DiZerega, G.S. Adhesion reduction in the rabbit uterine horn model using an absorbable barrier, TC-7. J. Reprod. Med. 1987, 32, 17–20. [Google Scholar] [PubMed]
- Ferland, R.; Campbell, P.K. Pre-clinical evaluation of a next-generation spray adhesion barrier for multiple site adhesion protection. Surg. Technol. Int. 2009, 18, 137–143. [Google Scholar]
- Burdick, J.A.; Chung, C.; Jia, X.; Randolph, M.A.; Langer, R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 2005, 6, 386–391. [Google Scholar] [CrossRef]
- Kim, G.; Gavande, V.; Shaikh, V.; Lee, W.K. Degradation Behavior of Poly(Lactide-Co-Glycolide) Monolayers Investigated by Langmuir Technique: Accelerating Effect. Molecules 2023, 28, 4810. [Google Scholar] [CrossRef]
- Chen, D.X.B. Extrusion Bioprinting of Scaffolds. In Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications; Springer International Publishing: Cham, Switzerland, 2019; pp. 117–145. [Google Scholar]
- Allaf, R.M. 4—Melt-molding technologies for 3D scaffold engineering. In Functional 3D Tissue Engineering Scaffolds; Deng, Y., Kuiper, J., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 75–100. [Google Scholar]
- Nadri, S.; Ali, R.; Hojjat, H.S.; Mina, H.; Mahmood, A.; Mostafavi, H. Prevention of peritoneal adhesions formation by core-shell electrospun ibuprofen-loaded PEG/silk fibrous membrane. Artif. Cells Nanomed. Biotechnol. 2022, 50, 40–48. [Google Scholar] [CrossRef]
- Gholami, A.; Abdoluosefi, H.E.; Riazimontazer, E.; Azarpira, N.; Behnam, M.; Emami, F.; Omidifar, N. Prevention of Postsurgical Abdominal Adhesion Using Electrospun TPU Nanofibers in Rat Model. Biomed. Res. Int. 2021, 2021, 9977142. [Google Scholar] [CrossRef]
- Vakilian, S.; Al-Hashmi, S.; Al-kindi, J.; Al-Fahdi, F.; Al-Wahaibi, N.; Shalaby, A.; Al-Riyami, H.; Al-Harrasi, A.; Jamshidi-adegani, F. Avastin-Loaded 3D-Printed Alginate Scaffold as an Effective Antiadhesive Barrier to Prevent Postsurgical Adhesion Bands Formation. Macromol. Biosci. 2024, 24, 2300530. [Google Scholar] [CrossRef]
- Li, S.; Huang, J.; Xu, Z.; Liu, Y.; Ren, H.; Li, Z.; Chen, C.; Chen, K.; Wu, X.; Ren, J. Melt electrowriting-printed peritoneal scaffold prevents peritoneal adhesion and facilitates peritoneal repair. Int. J. Bioprint 2023, 9, 682. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Hu, S.; Qin, W.; Tang, Y.; Guo, R.; Han, L. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention. ACS Omega 2021, 6, 23067–23075. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Newby, B.Z. Layer-by-layer Polyelectrolytes Coating of Alginate Microgels for Sustained Release of Sodium Benzoate and Zosteric Acid. J. Drug Deliv. Sci. Technol. 2018, 46, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Qi, P.; Zheng, Y.G.; Ohta, S.; Kokudo, N.; Hasegawa, K.; Ito, T. In Situ Fabrication of Double-Layered Hydrogels via Spray Processes to Prevent Postoperative Peritoneal Adhesion. ACS Biomater. Sci. Eng. 2019, 5, 4790–4798. [Google Scholar] [CrossRef]
Aspect | Advantages | Disadvantages | Proposed Solutions | Ref. |
---|---|---|---|---|
Biocompatibility | Highly biocompatible, interacts well with tissues. | – | No issues, used widely for tissue scaffolding. | [53] |
Biodegradability | Naturally degrades in the body, eliminating need for removal. | Degrades too quickly for long-term applications. | Crosslinking to control the degradation rate. | [54] |
Cell Affinity | Supports cell attachment, proliferation, and differentiation. | – | No issues, ideal for promoting tissue regeneration. | [55] |
Mechanical Properties | – | Poor mechanical strength, unsuitable for load-bearing tissues like bone and cartilage. | Crosslinking with agents or blending with stronger materials. | [51] |
Thermosensitivity | Can form hydrogels at physiological temperatures, adaptable for various forms. | Sensitive to temperature, loses structure at body temperature. | Chemical modification or crosslinking for stability. | [56] |
Crosslinking Flexibility | Can be chemically or physically crosslinked to enhance properties. | Toxicity risks from chemical crosslinkers (e.g., glutaraldehyde). | Use non-toxic methods like UV crosslinking or biocompatible agents. | [57] |
Cost and Availability | Abundant, inexpensive, easy to source from animal collagen. | Batch-to-batch variability due to natural sources. | Standardize extraction and processing methods. | [58] |
Bioactivity | Retains some bioactive motifs from collagen, supports cell signaling. | Limited bioactivity compared to native ECM. | Incorporation of additional bioactive molecules or growth factors. | [59] |
Processability | Easy to process into films, sponges, or 3D-printed scaffolds. | Processing challenges with maintaining stability in vivo. | Optimize processing techniques, such as 3D printing or freeze drying. | [50] |
Immunogenicity | Low immunogenicity when purified, reducing risk of immune reactions. | Potential immunogenicity from animal-derived sources. | Use synthetic, recombinant, or non-animal-derived gelatin. | [60] |
Hydrogel Formation | Forms hydrogels, useful for drug delivery and wound healing. | – | No issues, effective in encapsulating bioactive agents. | [61] |
Drug/Growth Factor Delivery | Excellent carrier for bioactive molecules, allowing controlled release. | – | No issues, widely used for therapeutic delivery systems. | [62] |
Nanotechnology Compatibility | Compatible with nanoparticles, enhancing functionality or loaded drugs. | – | No issues, can be combined with advanced nanotechnology for applications. | [63] |
Tissue Source | Species Origin | Common Applications | Reference |
---|---|---|---|
Small Intestinal Submucosa (SIS) | Porcine | Hernia repair, anti-adhesion barriers, wound healing | [107] |
Urinary Bladder Matrix (UBM) | Porcine | Soft tissue reconstruction, surgical mesh coatings | [108] |
Pericardium | Bovine, porcine | Hernia repair, pelvic reconstruction | [109] |
Uterus | Porcine, human (cadaveric) | Gynecologic tissue engineering, anti-adhesion scaffolds | [6,110] |
Amniotic Membrane | Human (placental tissue) | Ocular repair, abdominal adhesion barriers | [111] |
Product Name | Formulation | Application Route | Clinical Use Area | Key Strengths | Key Limitations |
---|---|---|---|---|---|
Seprafilm® (Genzyme Corporation, Deerfield, IL, USA) | HA–CMC bioresorbable sheet | Open surgery (laparotomy) | General, colorectal, gynecologic | Well-studied; reduces adhesion severity; FDA-approved | Requires dry field; difficult laparoscopic application; possible foreign-body response |
SepraSpray® (Genzyme Corporation, Cambridge, MA, USA) | HA–CMC dual-powder spray | Laparoscopic and open | General abdominal, pelvic | Sprayable for MIS use; similar efficacy to Seprafilm | Variable coverage; mixed clinical results |
Interceed® (Ethicon, Inc., Raritan, NJ, USA) | Oxidized regenerated cellulose mesh | Open surgery | Gynecologic (e.g., myomectomy) | Easy to use; effective in hemostatic field | Inactivated by bleeding; not effective in contaminated areas |
Oxiplex® (FzioMed, Inc., San Luis Obispo, CA, USA)/Intercoat® (Intercoat Paints, Ltd., Walsall, UK) | CMC–PEO hydrogel | Syringe (gel injection) | Gynecologic, abdominal, spinal | Conforms to irregular surfaces; favorable safety profile | Not FDA-approved in U.S.; moderate efficacy |
Guardix-SG® (Hanmi Pharmaceutical Co., Ltd., Seul, Republic of Koreea) | Thermosensitive poloxamer–alginate (CMC in early versions) | Laparoscopic and open | Gynecologic, thyroid, general | Thermogels at body temp; minimally invasive | Mostly used in East Asia; mixed data on long-term benefit |
Property | α-Chitosan | β-Chitosan | γ-Chitosan |
---|---|---|---|
Chitin Source | Exoskeleton of crustaceans | Squid pens, some marine species | Rare, mixed-source origins |
Polymer Alignment | Anti-parallel | Parallel | Mixed (parallel and anti-parallel) |
Crystallinity | High | Low | Moderate |
Solubility | Low (acidic environment) | High (neutral pH) | Moderate |
Mechanical Strength | High | Moderate | Intermediate |
Flexibility | Low | High | Moderate |
Applications | Scaffolds, wound healing, drug delivery | Hydrogels, wound care, drug delivery | Drug delivery, bioadhesives, anti-adhesion barriers |
Property | Description | Ref. |
---|---|---|
Melting Temperature (Tm) | ~55–60 °C; allows easy processing and molding | [193,199,200,202,203,204,205,206] |
Glass Transition Temperature (Tg) | ~−60° C; remains flexible at room and rubbery at body temperature | |
Crystalline Behavior | Semicrystalline; balance of crystalline and amorphous regions; affects melting and mechanical properties | |
Thermoplastic Behavior | Can be melted and reshaped multiple times without significant degradation | |
Processing Techniques | Extrusion, injection molding, electrospinning, 3D printing | |
Modification | Blending with other polymers (e.g., PLA, PEG) to modify Tm, Tg, crystallinity, and degradation rate | |
Cytocompatibility | Improved via blending with PLA, PEG, or surface modifications to enhance cell adhesion and reduce inflammatory response | |
Foreign Body Response | Slow degradation may trigger encapsulation or chronic inflammation if not modified; blending can mitigate these effects |
Material/Example | Primary Elimination Pathway | Notes |
---|---|---|
Seprafilm® (HA/CMC) | Renal (urinary) | Cleared within 28 days via urine |
Low-MW HA (<12 kDa) | Renal (urinary) | Only fragments < 12 kDa filtered |
PEG (<40 kDa) | Renal (urinary) | Rapid clearance if <~40 kDa |
PEG (>50 kDa) | Hepatic/biliary and renal | Captured by Kupffer cells; excreted in bile |
PLA/PLGA | Respiratory (CO2) and renal | Lactic acid metabolized to CO2, glycolic acid to urine or CO2 |
Oxidized Cellulose | Respiratory (CO2) and renal | Degrades to glucose acid, enters metabolism |
Collagen/Gelatin | Respiratory (CO2) or reused | Broken into amino acids; reused or oxidized |
Icodextrin (Adept®) (Baxter Healthcare Corporation, Singapore) | Lymphatic → renal (after enzymatic breakdown) | Too large for blood absorption; enters via lymph, then urine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazel Anvari-Yazdi, A.; Badea, I.; Chen, X. Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering. Gels 2025, 11, 441. https://doi.org/10.3390/gels11060441
Fazel Anvari-Yazdi A, Badea I, Chen X. Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering. Gels. 2025; 11(6):441. https://doi.org/10.3390/gels11060441
Chicago/Turabian StyleFazel Anvari-Yazdi, Abbas, Ildiko Badea, and Xiongbiao Chen. 2025. "Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering" Gels 11, no. 6: 441. https://doi.org/10.3390/gels11060441
APA StyleFazel Anvari-Yazdi, A., Badea, I., & Chen, X. (2025). Biomaterials in Postoperative Adhesion Barriers and Uterine Tissue Engineering. Gels, 11(6), 441. https://doi.org/10.3390/gels11060441