Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae
Abstract
1. Introducing Microalgae as a Sustainable Alternative for Food Applications and Gel-Forming Materials
2. Microalgae as a Source of Gel-Forming Agents
2.1. Sulfated Polysaccharides (SPs) as Components of Gel Formation
2.2. Exopolysaccharides as Components of Gel Formation
2.3. Protein Isolates as Components of Gel Formation
2.4. Combination of Gel-Formation Components of Microalgae
3. Gel-Forming Properties
3.1. Molecular Interactions in Gel Formation
3.2. Role of Environmental Factors in Gel Formation
4. Exploration of Gels from Algal and Non-Algal Sources
Gel-Forming Agents | Gel-Forming End-Products | References |
---|---|---|
Pectin (from fruits) | Food gels (e.g., jams, jellies), edible films | [92,109,110] |
Gelatin (animal-derived) | Hydrogels, capsules, food gels, foams | [111,112] |
Starch (from plants) | Food thickeners, edible films, and biodegradable packaging | [113,114] |
Gums (guar, xanthan, mastic, locust) | Stabilizers, thickeners, gels | [115,116,117,118] |
Cellulose Derivatives | Hydrogels, thickeners, coatings | [119,120] |
Carrageenan (from seaweed) | Food gels, thickening agents, edible films/bioplastics | [121,122,123,124] |
Alginate | Encapsulation systems, wound dressings | [94,111,125,126] |
5. Functional and Technological Properties for Food Applications
6. Concluding Remarks: Innovations and Emerging Trends for Commercial Potential
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chapman, J.; Power, A.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.E.; Truong, V.K.; Cozzolino, D. Challenges and opportunities of the fourth revolution: A brief insight into the future of food. Crit. Rev. Food Sci. Nutr. 2022, 62, 2845–2853. [Google Scholar] [CrossRef] [PubMed]
- Buono, S.; Langellotti, A.L.; Martello, A.; Rinna, F.; Fogliano, V. Functional ingredients from microalgae. Food Funct. 2014, 5, 1669–1685. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Nunes, M.C.; Fradinho, P.; Gouveia, L.; Sousa, I.; Raymundo, A.; Franco, J.M. Novel foods with microalgal ingredients—Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J. Food Eng. 2012, 110, 182–189. [Google Scholar] [CrossRef]
- Netanel Liberman, G.; Ochbaum, G.; Bitton, R.; Arad, S. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae. Polymer 2021, 215, 123353. [Google Scholar] [CrossRef]
- Fortuin, J.; Hellebois, T.; Iken, M.; Shaplov, A.S.; Fogliano, V.; Soukoulis, C. Stabilising and functional effects of Spirulina (Arthrospira platensis) protein isolate on encapsulated Lacticaseibacillus rhamnosus GG during processing, storage and gastrointestinal digestion. Food Hydrocoll. 2024, 149, 109519. [Google Scholar] [CrossRef]
- Vigani, M.; Parisi, C.; Rodríguez-Cerezo, E.; Barbosa, M.J.; Sijtsma, L.; Ploeg, M.; Enzing, C. Food and feed products from micro-algae: Market opportunities and challenges for the EU. Trends Food Sci. Technol. 2015, 42, 81–92. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Microalgae-Based Food Market Size, Share & Industry Analysis, by Species (Spirulina, Chlorella, Nannochloropsis, Isochrysis, and Others), by Application (Nutraceuticals, Packaged Food, Beverages, and Others), and Regional Forecast, 2024–2032; Fortune Business Insights: Pune, India. 2025. Available online: https://www.fortunebusinessinsights.com/industry-reports/microalgae-food-market-100802 (accessed on 30 May 2025).
- Markou, G.; Chentir, I.; Tzovenis, I. Chapter 9—Microalgae and cyanobacteria as food: Legislative and safety aspects. In Cultured Microalgae for the Food Industry; Lafarga, T., Acién, G., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 249–264. [Google Scholar]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Shirai, M.A.; Baú, T.R.; Zanela, J.; Pimentel, T.C. Microalgae as an innovative active ingredient for edible films and coatings for food applications. Algal Res. 2025, 86, 103959. [Google Scholar] [CrossRef]
- Saha, S.; Shukla, S.K.; Singh, H.R.; Singh, B.; Jha, S.K. Chapter 16—Bioactive compounds from microalgae. In An Integration of Phycoremediation Processes in Wastewater Treatment; Shah, M., Rodriguez-Couto, S., De La Cruz, C.B.V., Biswas, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 337–358. [Google Scholar]
- Blanco-Vieites, M.; Álvarez-Gil, M.; Delgado, F.; García-Ruesgas, L.; Rodríguez, E. Livestock wastewater bioremediation through indigenous microalgae culturing as a circular bioeconomy approach as cattle feed. Algal Res. 2024, 78, 103424. [Google Scholar] [CrossRef]
- Su, M.; Bastiaens, L.; Verspreet, J.; Hayes, M. Applications of Microalgae in Foods, Pharma and Feeds and Their Use as Fertilizers and Biostimulants: Legislation and Regulatory Aspects for Consideration. Foods 2023, 12, 3878. [Google Scholar] [CrossRef]
- Tounsi, L.; Hentati, F.; Ben Hlima, H.; Barkallah, M.; Smaoui, S.; Fendri, I.; Michaud, P.; Abdelkafi, S. Microalgae as feedstock for bioactive polysaccharides. Int. J. Biol. Macromol. 2022, 221, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Sakarika, M.; Koutra, E.; Tsafrakidou, P.; Terpou, A.; Kornaros, M. Microalgae-based remediation of wastewaters. In Microalgae Cultivation for Biofuels; Yousuf, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 317–335. [Google Scholar] [CrossRef]
- Gupta, R.; Mishra, N.; Singh, G.; Mishra, S.; Lodhiyal, N. Microalgae cultivation and value-based products from wastewater: Insights and applications. Blue Biotechnol. 2024, 1, 20. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.F.; Moreira, A.F.; Miguel, S.P.; Coutinho, P. Recent advances in microalgae encapsulation techniques for biomedical applications. Adv. Colloid Interface Sci. 2024, 333, 103297. [Google Scholar] [CrossRef]
- Pandeirada, C.O.; Maricato, É.; Ferreira, S.S.; Correia, V.G.; Pinheiro, B.A.; Evtuguin, D.V.; Palma, A.S.; Correia, A.; Vilanova, M.; Coimbra, M.A.; et al. Structural analysis and potential immunostimulatory activity of Nannochloropsis oculata polysaccharides. Carbohydr. Polym. 2019, 222, 114962. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Liu, D.; Gao, X.; Chen, Y.; Chen, Z.; Fu, C.; Lin, L.; Liu, B.; Zhao, C. Physicochemical characterization and antioxidant effects of green microalga Chlorella pyrenoidosa polysaccharide by regulation of microRNAs and gut microbiota in Caenorhabditis elegans. Int. J. Biol. Macromol. 2021, 168, 152–162. [Google Scholar] [CrossRef]
- Halaj, M.; Matulová, M.; Capek, P. Structural features of biologically active extracellular polysaccharide produced by green microalgae Dictyosphaerium chlorelloides. Int. J. Biol. Macromol. 2022, 214, 152–161. [Google Scholar] [CrossRef]
- Goo, B.G.; Baek, G.; Choi, D.J.; Park, Y.I.; Synytsya, A.; Bleha, R.; Seong, D.H.; Lee, C.-G.; Park, J.K. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour. Technol. 2013, 129, 343–350. [Google Scholar] [CrossRef]
- Rossi, F.; De Philippis, R. Exocellular Polysaccharides in Microalgae and Cyanobacteria: Chemical Features, Role and Enzymes and Genes Involved in Their Biosynthesis. In The Physiology of Microalgae; Borowitzka, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 565–590. [Google Scholar]
- Magnabosco, C.; Santaniello, G.; Romano, G. Microalgae: A Promising Source of Bioactive Polysaccharides for Biotechnological Applications. Molecules 2025, 30, 2055. [Google Scholar] [CrossRef]
- Ruiz-Dávila, C.E.; Solís-Andrade, K.I.; Olvera-Sosa, M.; Palestino, G.; Rosales-Mendoza, S. Core-shell chitosan/Porphyridium-exopolysaccharide microgels: Synthesis, properties, and biological evaluation. Int. J. Biol. Macromol. 2023, 246, 125655. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Duan, M.; Zhang, X.; Tan, T. A mild extraction and separation procedure of polysaccharide, lipid, chlorophyll and protein from Chlorella spp. Renew. Energy 2018, 118, 701–708. [Google Scholar] [CrossRef]
- Dai, J.; Wu, Y.; Chen, S.-W.; Zhu, S.; Yin, H.-P.; Wang, M.; Tang, J. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohydr. Polym. 2010, 82, 629–635. [Google Scholar] [CrossRef]
- Luo, A.; Hu, B.; Feng, J.; Lv, J.; Xie, S. Preparation, and physicochemical and biological evaluation of chitosan-Arthrospira platensis polysaccharide active films for food packaging. J. Food Sci. 2021, 86, 987–995. [Google Scholar] [CrossRef]
- Comas, B.; Rizza, L.S.; Ruseckaite, R.A.; Martucci, J.F. Schiff base crosslinked gelatin-Spirulina platensis protein concentrate films with enhanced antioxidant activity. J. Food Sci. 2023, 88, 1075–1088. [Google Scholar] [CrossRef]
- Mosayebi, V.; Fathi, M.; Shahedi, M.; Soltanizadeh, N.; Emam-Djomeh, Z. Fast-dissolving antioxidant nanofibers based on Spirulina protein concentrate and gelatin developed using needleless electrospinning. Food Biosci. 2022, 47, 101759. [Google Scholar] [CrossRef]
- Martínez-Macias, M.d.R.; Nateras-Ramírez, O.; Sánchez-Machado, D.I.; López-Cervantes, J.; Arias-Martínez, J.; Ávila-Villa, L.A.; Armendariz-Ontiveros, M.M.; Quintero-Vargas, J.T.d.J.; Villegas-Peralta, Y. Microalgae as innovative mineral and nutrient carriers; potential applications in soil improvement and animal nutrition. Food Bioprod. Process. 2025, 152, 139–150. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Production of Antioxidants and High Value Biomass from Nannochloropsis oculata: Effects of pH, Temperature and Light Period in Batch Photobioreactors. Mar. Drugs 2022, 20, 552. [Google Scholar] [CrossRef]
- Emam, K.R.S.; Ali, S.A.M.; Morsy, A.S.; Fouda, W.A.; Elbaz, A.M. Role of Nannochloropsis Oculata supplement in improving performance, antioxidant status, blood metabolites, and egg quality of laying hens under hot environmental conditions. Sci. Rep. 2024, 14, 16884. [Google Scholar] [CrossRef]
- Lin, L.; Yuan, W.; Xiao, J.; Jia, J.; Xie, Y.; Cai, Q.; Dai, C.; Li, Q.; Wang, B. Identification of novel ACE inhibitory peptides from Nannochloropsis oculata through peptidomics, in silico screening and molecular docking. Food Chem. 2025, 490, 145073. [Google Scholar] [CrossRef]
- Lv, K.; Yuan, Q.; Li, H.; Li, T.; Ma, H.; Gao, C.; Zhang, S.; Liu, Y.; Zhao, L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022, 11, 725. [Google Scholar] [CrossRef]
- Chen, K.; Ahmad, M.I.; Jiang, Q.; Zhang, H. Acid-induced hydrogels of edible Chlorella pyrenoidosa protein with composite biopolymers network. Food Chem. 2024, 460, 140699. [Google Scholar] [CrossRef]
- Li, Y.; Aiello, G.; Fassi, E.M.A.; Boschin, G.; Bartolomei, M.; Bollati, C.; Roda, G.; Arnoldi, A.; Grazioso, G.; Lammi, C. Investigation of Chlorella pyrenoidosa Protein as a Source of Novel Angiotensin I-Converting Enzyme (ACE) and Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides. Nutrients 2021, 13, 1624. [Google Scholar] [CrossRef]
- Mishra, A.; Jha, B. Isolation and characterization of extracellular polymeric substances from micro-algae Dunaliella salina under salt stress. Bioresour. Technol. 2009, 100, 3382–3386. [Google Scholar] [CrossRef]
- Gal, J.L.; Johnson, S.M. An Exopolysaccharide from the Cyanobacterium Arthrospira platensis May Utilize CH-π Bonding: A Review of the Isolation, Purification, and Chemical Structure of Calcium-Spirulan. ACS Omega 2024, 9, 35243–35255. [Google Scholar] [CrossRef]
- Silva, M.B.F.; Azero, E.G.; Teixeira, C.M.L.L.; Andrade, C.T. Influence of culture conditions on the production of extracellular polymeric substances (EPS) by Arthrospira platensis. Bioresour. Bioprocess. 2020, 7, 47. [Google Scholar] [CrossRef]
- Zanolla, V.; Biondi, N.; Niccolai, A.; Abiusi, F.; Adessi, A.; Rodolfi, L.; Tredici, M.R. Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors. J. Appl. Phycol. 2022, 34, 1189–1199. [Google Scholar] [CrossRef]
- Babich, O.; Ivanova, S.; Tupitsyn, A.; Vladimirov, A.; Nikolaeva, E.; Tiwari, A.; Budenkova, E.; Kashirskikh, E.; Anokhova, V.; Michaud, P.; et al. Study of the polysaccharide production by the microalgae C-1509 Nannochloris sp. Naumann. Biotechnol. Rep. 2023, 40, e00818. [Google Scholar] [CrossRef] [PubMed]
- Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods 2020, 68, 103919. [Google Scholar] [CrossRef]
- Templeton, D.W.; Quinn, M.; Van Wychen, S.; Hyman, D.; Laurens, L.M.L. Separation and quantification of microalgal carbohydrates. J. Chromatogr. A 2012, 1270, 225–234. [Google Scholar] [CrossRef]
- Alvarez, X.; Alves, A.; Ribeiro, M.P.; Lazzari, M.; Coutinho, P.; Otero, A. Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydr. Polym. 2021, 254, 117303. [Google Scholar] [CrossRef]
- Quan, Y.; Yang, S.; Wan, J.; Su, T.; Zhang, J.; Wang, Z. Optimization for the extraction of polysaccharides from Nostoc commune and its antioxidant and antibacterial activities. J. Taiwan Inst. Chem. Eng. 2015, 52, 14–21. [Google Scholar] [CrossRef]
- Jia, S.; Yu, H.; Lin, Y.; Dai, Y. Characterization of extracellular polysaccharides from Nostoc flagelliforme cells in liquid suspension culture. Biotechnol. Bioprocess Eng. 2007, 12, 271–275. [Google Scholar] [CrossRef]
- Geresh, S.; Arad, S.; Levy-Ontman, O.; Zhang, W.; Tekoah, Y.; Glaser, R. Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr. Res. 2009, 344, 343–349. [Google Scholar] [CrossRef]
- Balti, R.; Le Balc’h, R.; Brodu, N.; Gilbert, M.; Le Gouic, B.; Le Gall, S.; Sinquin, C.; Massé, A. Concentration and purification of Porphyridium cruentum exopolysaccharides by membrane filtration at various cross-flow velocities. Process Biochem. 2018, 74, 175–184. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Mendonça, I.; Póvoa, I.; Carvalho, H.; Correia, A.; Vilanova, M.; Silva, T.H.; Coimbra, M.A.; Nunes, C. Impact of growth medium salinity on galactoxylan exopolysaccharides of Porphyridium purpureum. Algal Res. 2021, 59, 102439. [Google Scholar] [CrossRef]
- Arad, S.; Levy-Ontman, O. Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr. Opin. Biotechnol. 2010, 21, 358–364. [Google Scholar] [CrossRef]
- Tsvetanova, F.; Yankov, D. Bioactive Compounds from Red Microalgae with Therapeutic and Nutritional Value. Microorganisms 2022, 10, 2290. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Zhou, T.; Cao, L.; Cai, Y.; Wang, Y.; Cui, X.; Yan, H.; Ruan, R.; Zhang, Q. Effects of Culture Conditions on the Performance of Arthrospira platensis and Its Production of Exopolysaccharides. Foods 2022, 11, 2020. [Google Scholar] [CrossRef]
- Garza-Rodríguez, Z.B.; Hernández-Pérez, J.; Santacruz, A.; Jacobo-Velázquez, D.A.; Benavides, J. Prospective on the application of abiotic stresses to enhance the industrial production of exopolysaccharides from microalgae. Curr. Res. Biotechnol. 2022, 4, 439–444. [Google Scholar] [CrossRef]
- El-Naggar, N.E.-A.; Hussein, M.H.; Shaaban-Dessuuki, S.A.; Dalal, S.R. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci. Rep. 2020, 10, 3011. [Google Scholar] [CrossRef]
- De Gol, C.; Snel, S.; Rodriguez, Y.; Beyrer, M. Gelling capacity of cell-disrupted Chlorella vulgaris and its texture effect in extruded meat substitutes. Food Struct. 2023, 37, 100332. [Google Scholar] [CrossRef]
- Gouveia, L. Spirulina maxima and Diacronema vlkianum microalgae in vegetable gelled desserts. Nutr. Food Sci. 2008, 38, 492–501. [Google Scholar] [CrossRef]
- Wang, M.; Yin, Z.; Sun, W.; Zhong, Q.; Zhang, Y.; Zeng, M. Microalgae play a structuring role in food: Effect of spirulina platensis on the rheological, gelling characteristics, and mechanical properties of soy protein isolate hydrogel. Food Hydrocoll. 2023, 136, 108244. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Q.; Yang, Q.; Gong, Z.; Wu, Y.; Liu, X. Effects of molecular structure and charge state on the foaming and emulsifying properties of Spirulina protein isolates. Food Res. Int. 2024, 187, 114407. [Google Scholar] [CrossRef] [PubMed]
- Chaudry, S.; Hurtado-McCormick, V.; Cheng, K.Y.; Willis, A.; Speight, R.; Kaksonen, A.H. Microalgae to bioplastics—Routes and challenges. Clean. Eng. Technol. 2025, 25, 100922. [Google Scholar] [CrossRef]
- Pomin, V.H. Chapter 12—Structure–Function Relationship of Anticoagulant and Antithrombotic Well-Defined Sulfated Polysaccharides from Marine Invertebrates. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 65, pp. 195–209. [Google Scholar]
- Patel, S. 4—Seaweed-Derived Sulfated Polysaccharides: Scopes and Challenges in Implication in Health Care. In Bioactive Seaweeds for Food Applications; Qin, Y., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 71–93. [Google Scholar]
- Lupescu, N.; Arad, S.; Geresh, S.; Bernstein, M.A.; Glaser, R. Structure of some sulfated sugars isolated after acid hydrolysis of the extracellular polysaccharide of Porphyridium sp., a unicellular red alga. Carbohydr. Res. 1991, 210, 349–352. [Google Scholar] [CrossRef]
- Netanel Liberman, G.; Ochbaum, G.; Mejubovsky-Mikhelis, M.; Bitton, R.; Arad, S. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum. Int. J. Biol. Macromol. 2020, 145, 1171–1179. [Google Scholar] [CrossRef]
- Han, S.-I.; Jeon, M.S.; Park, Y.H.; Kim, S.; Choi, Y.-E. Semi-continuous immobilized cultivation of Porphyridium cruentum for sulfated polysaccharides production. Bioresour. Technol. 2021, 341, 125816. [Google Scholar] [CrossRef]
- Liu, W.-C.; Guo, Y.; Zhao, Z.-H.; Jha, R.; Balasubramanian, B. Algae-Derived Polysaccharides Promote Growth Performance by Improving Antioxidant Capacity and Intestinal Barrier Function in Broiler Chickens. Front. Vet. Sci. 2020, 7, 601336. [Google Scholar] [CrossRef]
- Shao, P.; Qin, M.; Han, L.; Sun, P. Rheology and characteristics of sulfated polysaccharides from chlorophytan seaweeds Ulva fasciata. Carbohydr. Polym. 2014, 113, 365–372. [Google Scholar] [CrossRef]
- Li, X.; Shen, A.; Xiao, M.; Li, S.; Yang, W. New insights on health benefits, interactions with food components and potential application of marine-derived sulfated polysaccharides: A review. Int. J. Biol. Macromol. 2025, 294, 139516. [Google Scholar] [CrossRef]
- Gawai, K.M.; Mudgal, S.P.; Prajapati, J.B. Chapter 3—Stabilizers, Colorants, and Exopolysaccharides in Yogurt. In Yogurt in Health and Disease Prevention; Shah, N.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 49–68. [Google Scholar]
- Paniagua-Michel, J.d.J.; Olmos-Soto, J.; Morales-Guerrero, E.R. Chapter Eleven—Algal and Microbial Exopolysaccharides: New Insights as Biosurfactants and Bioemulsifiers. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 73, pp. 221–257. [Google Scholar]
- Sui, Z.; Gizaw, Y.; BeMiller, J.N. Extraction of polysaccharides from a species of Chlorella. Carbohydr. Polym. 2012, 90, 1–7. [Google Scholar] [CrossRef]
- Brezeștean, I.; Bocăneală, M.; Gherman, A.M.R.; Porav, S.A.; Kacsó, I.; Rakosy-Tican, E.; Dina, N.E. Spectroscopic investigation of exopolysaccharides purified from Arthrospira platensis cultures as potential bioresources. J. Mol. Struct. 2021, 1246, 131228. [Google Scholar] [CrossRef]
- Phélippé, M.; Gonçalves, O.; Thouand, G.; Cogne, G.; Laroche, C. Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Res. 2019, 38, 101426. [Google Scholar] [CrossRef]
- Chronakis, I.S. Gelation of Edible Blue-Green Algae Protein Isolate (Spirulina platensis Strain Pacifica): Thermal Transitions, Rheological Properties, and Molecular Forces Involved. J. Agric. Food Chem. 2001, 49, 888–898. [Google Scholar] [CrossRef]
- Pereira, S.; Zille, A.; Micheletti, E.; Moradas-Ferreira, P.; De Philippis, R.; Tamagnini, P. Complexity of cyanobacterial exopolysaccharides: Composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev. 2009, 33, 917–941. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; Hayashi, T.; Kojima, I. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: In vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res. Hum. Retroviruses 1996, 12, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Mukherjee, A. Chapter 2—Extraction and purification of protein from algae (microalgae and seaweeds). In Marine Molecules from Algae and Cyanobacteria; Fuertes, P.O., Verma, D.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 25–39. [Google Scholar]
- Mosibo, O.K.; Ferrentino, G.; Udenigwe, C.C. Microalgae Proteins as Sustainable Ingredients in Novel Foods: Recent Developments and Challenges. Foods 2024, 13, 733. [Google Scholar] [CrossRef] [PubMed]
- Pipliya, S.; Kumar, S.; Gupta, R.K.; Das, R.S.; Meena, D.; Srivastav, P.P.; Tiwari, B.K.; Garcia-Vaquero, M. The future of algal proteins: Innovations in extraction and modifications, functional properties, and sustainable food applications. Future Foods 2025, 11, 100549. [Google Scholar] [CrossRef]
- Andrade, B.B.; Cardoso, L.G.; Assis, D.d.J.; Costa, J.A.V.; Druzian, J.I.; da Cunha Lima, S.T. Production and characterization of Spirulina sp. LEB 18 cultured in reused Zarrouk’s medium in a raceway-type bioreactor. Bioresour. Technol. 2019, 284, 340–348. [Google Scholar] [CrossRef]
- Moreira, J.B.; Lim, L.-T.; Zavareze, E.d.R.; Dias, A.R.G.; Costa, J.A.V.; Morais, M.G.d. Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocoll. 2019, 93, 131–136. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Gallego, I.; Medic, N.; Pedersen, J.S.; Ramasamy, P.K.; Robbens, J.; Vereecke, E.; Romeis, J. The microalgal sector in Europe: Towards a sustainable bioeconomy. New Biotechnol. 2025, 86, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dakhili, S.; Hashami, Z.; Rostami, N.; Moradi, S.; Moslehishad, M.; Shojaee-Aliabadi, S. Innovative applications of microalgae in biodegradable food packaging: A review. J. Agric. Food Res. 2025, 19, 101723. [Google Scholar] [CrossRef]
- Srimongkol, P.; Songserm, P.; Kuptawach, K.; Puthong, S.; Sangtanoo, P.; Thitiprasert, S.; Thongchul, N.; Phunpruch, S.; Karnchanatat, A. Sulfated polysaccharides derived from marine microalgae, Synechococcus sp. VDW, inhibit the human colon cancer cell line Caco-2 by promoting cell apoptosis via the JNK and p38 MAPK signaling pathway. Algal Res. 2023, 69, 102919. [Google Scholar] [CrossRef]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Li, T.-Y.; Yang, H.-C.; Ding, M.-H.; Chen, L.-J.; Yu, S.-Y.; Meng, X.-S.; Jin, J.-J.; Sun, S.-Z.; Zhang, J.; et al. Design and Fabrication of Viscoelastic Hydrogels as Extracellular Matrix Mimicry for Cell Engineering. Chem. Bio. Eng. 2024, 1, 916–933. [Google Scholar] [CrossRef]
- Tuvikene, R.; Truus, K.; Kollist, A.; Volobujeva, O.; Mellikov, E.; Pehk, T. Gel-forming structures and stages of red algal galactans of different sulfation levels. J. Appl. Phycol. 2008, 20, 527–535. [Google Scholar] [CrossRef]
- Lin, J.; Jiao, G.; Kermanshahi-Pour, A. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications. Mar. Drugs 2022, 20, 306. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, C.; Xu, Y.; Du, L.; Yang, X. Food Gels Based on Polysaccharide and Protein: Preparation, Formation Mechanisms, and Delivery of Bioactive Substances. Gels 2024, 10, 735. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, D.; Campanella, O.H. Effect of pH on the gelling properties of pea protein-pectin dispersions. Food Hydrocoll. 2024, 151, 109731. [Google Scholar] [CrossRef]
- Alfatah, T.; Mistar, E.M.; Aswita, D.; Jaber, M.; Surya, I. Physico-chemical and thermal degradation characteristics of marine red macroalgae for sustainable packaging applications. Bioresour. Technol. Rep. 2024, 28, 102001. [Google Scholar] [CrossRef]
- Fabich, H.T.; Vogt, S.J.; Sherick, M.L.; Seymour, J.D.; Brown, J.R.; Franklin, M.J.; Codd, S.L. Microbial and algal alginate gelation characterized by magnetic resonance. J. Biotechnol. 2012, 161, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Natsi, P.D.; Koutsoukos, P.G. Calcium Carbonate Mineralization of Microalgae. Biomimetics 2022, 7, 140. [Google Scholar] [CrossRef]
- Lavoisier, A.; Vilgis, T.A.; Aguilera, J.M. Effect of cysteine addition and heat treatment on the properties and microstructure of a calcium-induced whey protein cold-set gel. Curr. Res. Food Sci. 2019, 1, 31–42. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Lucas, B.F.; Alvarenga, A.G.P.; Moreira, J.B.; de Morais, M.G. Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. Polysaccharides 2021, 2, 759–772. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Rodrigues, S. Cold plasma technology for sustainable food production: Meeting the United Nations sustainable development goals. Sustain. Food Technol. 2024, 3, 32–53. [Google Scholar] [CrossRef]
- Pogorzelska-Nowicka, E.; Hanula, M.M.; Brodowska-Trębacz, M.; Górska-Horczyczak, E.; Jankiewicz, U.; Mazur, T.; Marcinkowska-Lesiak, M.; Półtorak, A.; Wierzbicka, A. The Effect of Cold Plasma Pretreatment on Water-Suspended Herbs Measured in the Content of Bioactive Compounds, Antioxidant Activity, Volatile Compounds and Microbial Count of Final Extracts. Antioxidants 2021, 10, 1740. [Google Scholar] [CrossRef]
- Noore, S.; Tiwari, B.K.; Jambrak, A.R.; Dukić, J.; Wanigasekara, J.; Curtin, J.F.; Fuentes-Grunewald, C.; O’Donnell, C. Extraction yield and biological activity of phycobiliproteins from Porphyridium purpureum using atmospheric cold plasma discharge and jet systems. LWT 2023, 187, 115204. [Google Scholar] [CrossRef]
- Leandro, G.C.; Laroque, D.A.; Monteiro, A.R.; Carciofi, B.A.M.; Valencia, G.A. Current Status and Perspectives of Starch Powders Modified by Cold Plasma: A Review. J. Polym. Environ. 2024, 32, 510–523. [Google Scholar] [CrossRef]
- Pierre, G.; Delattre, C.; Dubessay, P.; Jubeau, S.; Vialleix, C.; Cadoret, J.P.; Probert, I.; Michaud, P. What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019, 24, 4296. [Google Scholar] [CrossRef] [PubMed]
- Vieira, C.B.; Sousa, J.R.; Do Vale, D.A.; Guimarães, C.P.; de Sousa, K.C.; Mattos, A.L.A.; Silva, A.L.C.; de Sá Moreira Souza Filho, M.; Souza, B.W.S. Edible films based on sulfated polysaccharides from the seaweed Gracilaria birdiae: Physicochemical, optical and mechanical properties. Carbohydr. Res. 2025, 552, 109473. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.M.; Lisboa, C.R.; Costa, J.A.V. High protein ingredients of microalgal origin: Obtainment and functional properties. Innov. Food Sci. Emerg. Technol. 2018, 47, 187–194. [Google Scholar] [CrossRef]
- Li, G.; Guo, Q.; Chen, Q.; Ouyang, K.; Xie, H.; Xiong, H.; Du, Y.; Zhao, Q. Valorizing Arthrospira cell residues into polysaccharides: Characterization and application in yogurt. Food Chem. 2024, 461, 140902. [Google Scholar] [CrossRef]
- Jayakody, M.M.; Kaushani, K.G.; Vanniarachchy, M.P.G.; Wijesekara, I. Hydrocolloid and water soluble polymers used in the food industry and their functional properties: A review. Polym. Bull. 2023, 80, 3585–3610. [Google Scholar] [CrossRef]
- Schoina, V.; Terpou, A.; Bosnea, L.; Kanellaki, M.; Nigam, P.S. Entrapment of Lactobacillus casei ATCC393 in the viscus matrix of Pistacia terebinthus resin for functional myzithra cheese manufacture. LWT 2018, 89, 441–448. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Almeida, P.F.; Costa, N.; Vasconcelos, I.; Guerhardt, F.; Boukouvalas, D.T.; Alves, W.A.L.; Mendoza, P.C.; Gamarra, F.M.C.; Llanos, S.A.V.; et al. Combination of Computational Techniques to Obtain High-Quality Gelatin-Base Gels from Chicken Feet. Polymers 2021, 13, 1289. [Google Scholar] [CrossRef]
- Rosales, T.K.O.; Fabi, J.P. Pectin-based nanoencapsulation strategy to improve the bioavailability of bioactive compounds. Int. J. Biol. Macromol. 2023, 229, 11–21. [Google Scholar] [CrossRef]
- Mishra, R.; Banthia, A.; Majeed, A. Pectin based formulations for biomedical applications: A review. Asian J. Pharm. Clin. Res. 2012, 5, 1–7. [Google Scholar]
- Devi, N.; Hazarika, D.; Deka, C.; Kakati, D.K. Study of Complex Coacervation of Gelatin A and Sodium Alginate for Microencapsulation of Olive Oil. J. Macromol. Sci. Part A 2012, 49, 936–945. [Google Scholar] [CrossRef]
- Lv, Y.; Yang, F.; Li, X.; Zhang, X.; Abbas, S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll. 2014, 35, 305–314. [Google Scholar] [CrossRef]
- Trindade, M.; Grosso, C. The stability of ascorbic acid microencapsulated in granules of rice starch and in gum arabic. J. Microencapsul. 2000, 17, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhou, S.; Fan, S.; Ma, Y.; Li, D.; Tao, Y.; Han, Y. Encapsulation of bioactive polyphenols by starch and their impacts on gut microbiota. Curr. Opin. Food Sci. 2021, 38, 102–111. [Google Scholar] [CrossRef]
- Terpou, A.; Nigam, P.S.; Bosnea, L.; Kanellaki, M. Evaluation of Chios mastic gum as antimicrobial agent and matrix forming material targeting probiotic cell encapsulation for functional fermented milk production. LWT 2018, 97, 109–116. [Google Scholar] [CrossRef]
- Lii, C.Y.; Liaw, S.C.; Lai, V.F.; Tomasik, P. Xanthan gum-gelatin complexes. Eur. Polym. J. 2002, 38, 1377–1381. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Chen, Z.; Wang, T.; Lu, Z.; Hu, W.; Wang, L. Zein/gum Arabic nanoparticle-stabilized Pickering emulsion with thymol as an antibacterial delivery system. Carbohydr. Polym. 2018, 200, 416–426. [Google Scholar] [CrossRef]
- Mavrakis, C.; Kiosseoglou, V. The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food Hydrocoll. 2008, 22, 854–861. [Google Scholar] [CrossRef]
- Koupantsis, T.; Kiosseoglou, V. Whey protein–carboxymethylcellulose interaction in solution and in oil-in-water emulsion systems. Effect on emulsion stability. Food Hydrocoll. 2009, 23, 1156–1163. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Characterisation and storage stability of aronia anthocyanins encapsulated with combinations of maltodextrin with carboxymethyl cellulose, gum Arabic, and xanthan gum. Food Chem. 2023, 405, 135002. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, L.; Lobato-Calleros, C.; Pimentel-González, D.J.; Vernon-Carter, E.J. Lactobacillus plantarum protection by entrapment in whey protein isolate: κ-carrageenan complex coacervates. Food Hydrocoll. 2014, 36, 181–188. [Google Scholar] [CrossRef]
- Gu, Y.S.; Decker, E.A.; McClements, D.J. Influence of pH and carrageenan type on properties of β-lactoglobulin stabilized oil-in-water emulsions. Food Hydrocoll. 2005, 19, 83–91. [Google Scholar] [CrossRef]
- Soraya, M.; Laksono, H.; Putri, R.P.G.; Royanti, I.; Perwatasari, D.D.; Dewi, R.A.P.; Purwoto, H. Exploring disintegration and swelling dynamics in Kappa-Carrageenan-based seaweed capsule shells. S. Afr. J. Chem. Eng. 2025, 53, 96–102. [Google Scholar] [CrossRef]
- Amran, M.; Ali, H.; Issa, H.; Sahini, M.; Vuai, S. Assessment of baseline physicochemical qualities of carrageenan-based bioplastics from Kappaphycus alvarezii seaweed for their packaging applications. Carbohydr. Polym. Technol. Appl. 2025, 10, 100790. [Google Scholar] [CrossRef]
- George, M.; Abraham, T.E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. J. Control. Release 2006, 114, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Raei, M.; Rajabzadeh, G.; Zibaei, S.; Jafari, S.M.; Sani, A.M. Nano-encapsulation of isolated lactoferrin from camel milk by calcium alginate and evaluation of its release. Int. J. Biol. Macromol. 2015, 79, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yin, Z.; Zeng, M. Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocoll. 2022, 131, 107743. [Google Scholar] [CrossRef]
- Li, S.; Guo, W.; Zhang, M.; Zeng, M.; Wu, H. Microalgae polysaccharides exert antioxidant and anti-inflammatory protective effects on human intestinal epithelial cells in vitro and dextran sodium sulfate-induced mouse colitis in vivo. Int. J. Biol. Macromol. 2024, 254, 127811. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Khanniri, E.; Mortazavian, A.M. Chapter 27—Microalgae added to beverages, dairy, prebiotic, and probiotic products. In Handbook of Food and Feed from Microalgae; Jacob-Lopes, E., Queiroz, M.I., Maroneze, M.M., Zepka, L.Q., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 335–347. [Google Scholar]
- Moreira, J.B.; Vaz, B.d.S.; Cardias, B.B.; Cruz, C.G.; Almeida, A.C.A.d.; Costa, J.A.V.; Morais, M.G.d. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022, 3, 441–457. [Google Scholar] [CrossRef]
- Terpou, A.; Bosnea, L.; Mataragkas, M.; Markou, G. Influence of Incorporated Arthrospira (Spirulina) platensis on the Growth of Microflora and Physicochemical Properties of Feta-Type Cheese as Functional Food. Proceedings 2021, 70, 97. [Google Scholar]
- Bosnea, L.; Terpou, A.; Pappa, E.; Kondyli, E.; Mataragas, M.; Markou, G.; Katsaros, G. Incorporation of Spirulina platensis on Traditional Greek Soft Cheese with Respect to Its Nutritional and Sensory Perspectives. Proceedings 2021, 70, 99. [Google Scholar]
- Wang, H.; Fan, H.; Zhang, S.; Xia, C.; Wang, J.; Zhang, Y.; Liu, T. Effects of Tremella polysaccharide on frost resistance of frozen dough considering water state, physical property and gluten structure. LWT 2023, 190, 115536. [Google Scholar] [CrossRef]
- Irondi, E.A.; Imam, Y.T.; Ajani, E.O.; Alamu, E.O. Natural and modified food hydrocolloids as gluten replacement in baked foods: Functional benefits. Grain Oil Sci. Technol. 2023, 6, 163–171. [Google Scholar] [CrossRef]
- Kamil, M.; Agustini, T.W.; Susanto, E.; Riyadi, P.H.; Purnamayati, L.; Setyastuti, A.I.; Hazahari, N.Y. Enhancing Chinese Steam Bun Characteristics with Chlorella vulgaris-Enriched Coconut Oil. J. Food Nutr. Res. 2024, 12, 264–271. [Google Scholar] [CrossRef]
- Bibi, A.; Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Radicetti, E.; Umair, M.; Shoukat, M.; Khan, M.K.I.; Aadil, R.M. Recent Advances in the Production of Exopolysaccharide (EPS) from Lactobacillus spp. and Its Application in the Food Industry: A Review. Sustainability 2021, 13, 12429. [Google Scholar] [CrossRef]
- Ginzberg, A.; Korin, E.; Arad, S.M. Effect of drying on the biological activities of a red microalgal polysaccharide. Biotechnol Bioeng 2008, 99, 411–420. [Google Scholar] [CrossRef]
- Nguyen, A.Q.; Mohammadi, M.; Alian, M.; Muralitharan, G.; Chauhan, V.S.; Balan, V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol. Adv. 2024, 77, 108471. [Google Scholar] [CrossRef]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a sustainable source of edible proteins and bioactive peptides—Current trends and future prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Kaloudis, T.; Hiskia, A.; Steinhaus, M.; Dimotikali, D.; Triantis, T.M. Volatile Profiling of Spirulina Food Supplements. Foods 2024, 13, 1257. [Google Scholar] [CrossRef]
- Argin-Soysal, S.; Kofinas, P.; Lo, Y.M. Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocoll. 2009, 23, 202–209. [Google Scholar] [CrossRef]
- Muhoza, B.; Qi, B.; Harindintwali, J.D.; Farag Koko, M.Y.; Zhang, S.; Li, Y. Combined plant protein modification and complex coacervation as a sustainable strategy to produce coacervates encapsulating bioactives. Food Hydrocoll. 2022, 124, 107239. [Google Scholar] [CrossRef]
- Guo, Q.; Meng, Q.; Wang, L.; Yu, J.; Chen, X.; Liu, D.; Li, D.; Wang, C.; Liang, F.; Ma, W.; et al. Identification of odor-causing compounds in six species of odor-producing microalgae separated from drinking water source with distinct fishy odor: Insight into microalgae growth and odor characteristics. Chemosphere 2024, 350, 141043. [Google Scholar] [CrossRef]
- Shahid, A.; Fan, Z.; Su, K.; Zhao, A.; Mehmood, M.A.; Chang, J.-S.; Solovchenko, A.E.; Alam, M.A.; Xu, J. Sensory chemistry of Spirulina: Unveiling trends and innovations in aromatic volatile organic compound biosynthesis in off-flavors and odor mitigation strategies. Trends Food Sci. Technol. 2025, 156, 104886. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Afraz, M.T.; Yılmaz, B.B.; Adil, M.; Arshad, N.; Goksen, G.; Ali, M.; Zeng, X.-A. Recent progress in natural seaweed pigments: Green extraction, health-promoting activities, techno-functional properties and role in intelligent food packaging. J. Agric. Food Res. 2024, 15, 100991. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Kosma, I.; Mataragas, M.; Pappa, E.; Badeka, A.V.; Bosnea, L. Innovative Intelligent Cheese Packaging with Whey Protein-Based Edible Films Containing Spirulina. Sustainability 2023, 15, 13909. [Google Scholar] [CrossRef]
- Nayak, M.; Padhi, D.; Das, N.; Kashyap, S. Chapter 5—Recovery of high value carotenoids from microalgae: Health beneficial metabolites. In Algal Biorefinery; Mehariya, S., Kumar, B., Bhatia, S.K., Karthikeyan, O.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 69–102. [Google Scholar]
- Reimão, M.; Almeida, L.; Ramos, C.; Eusébio, N.; Martins, R.; Vieira da Silva, M.; Vasconcelos, V.; Freitas, M. Colouring applications of microalgae and cyanobacteria photosynthetic pigments: Challenges for industrial and market acceptance. J. Clean. Prod. 2025, 520, 146071. [Google Scholar] [CrossRef]
- Alehosseini, E.; McSweeney, P.L.H.; Miao, S. Recent updates on plant protein-based dairy cheese alternatives: Outlook and challenges. Crit. Rev. Food Sci. Nutr. 2025, 1–15. [Google Scholar] [CrossRef]
- Yang, Y.; Hassan, S.H.A.; Awasthi, M.K.; Gajendran, B.; Sharma, M.; Ji, M.-K.; Salama, E.-S. The recent progress on the bioactive compounds from algal biomass for human health applications. Food Biosci. 2023, 51, 102267. [Google Scholar] [CrossRef]
- Barta, D.G.; Coman, V.; Vodnar, D.C. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Res. 2021, 58, 102410. [Google Scholar] [CrossRef]
- Berezhnaya, Y.D.; Kazachenko, A.S.; Kazachenko, A.S.; Malyar, Y.N.; Borovkova, V.S. Sulfation of Various Polysaccharide Structures: Different Methods and Perspectives. Chemistry 2024, 6, 640–665. [Google Scholar] [CrossRef]
Microalgae Species | Key Gel-Forming Compound(s) | Major Composition of Gelling Compounds | Gel Applications | References |
---|---|---|---|---|
Chlorella pyrenoidosa | Extracellular Polysaccharides (EPSs) | Mannose, Ribose, Rhamnose, Glucuronic acid, Glucose, Galactose, Xylose, Arabinose | Texturizer, stabilizer in food systems | [36] |
Chlorella pyrenoidosa | Proteins | Edible, structural, and enzymatic proteins | Forming hydrogels | [37,38] |
Dunaliella spp. | Polysaccharides | Galactose, Glucose, Mannose, Arabinose | Functional food gels with antiviral potential | [28] |
Dunaliella salina | Extracellular Polysaccharides (EPSs) | Fructose, Galactose, Glucose, Xylose | Food gels | [39] |
Dunaliella tertiolecta | Extracellular Polysaccharide (EPSs) | α-D-glucan | Limited gelation capabilities compared to complex heteropolysaccharides, unbranched nature | [23] |
Arthrospira platensis (formerly Spirulina) | Complex heteropolysaccharides (EPSs) known as calcium-spirulan (Ca-SP) | Mannose, Rhamnose, Fructose, Ribose, Galactose, Glucose, Xylose, Galacturonic acid, Glucuronic acid | Viscosity, gelling, and emulsifying properties; supports active biofilms for food packaging and applications in food, cosmetics, and biomedical fields | [29,40,41,42] |
Arthrospira platensis (formerly Spirulina) | Proteins | Phycobiliproteins: C-phycocyanin (C-PC), Allophycocyanin (APC) | Biofilms, nanofibers, hydrogels, edible films | [30,31,42] |
Nannochloropsis sp. | Extracellular polysaccharides (EPSs) | Glucose, Mannose, Mannuronic acid, Glucuronic acid, traces of rhamnose and xylose | Biofilm formation | [32,43,44,45] |
Nostoc spp. | Sulfated polysaccharides/Extracellular Polysaccharides (EPSs) | Glucose, Xylose, Arabinose, Mannose, Galactose, and Uronic acids | Gelling agents with antimicrobial properties | [46,47,48] |
Porphyridium spp. | Protein | Phycobiliproteins | Reversible gels, biomedical hydrogels | [32,49] |
Porphyridium spp. | Sulfated polysaccharides/ESPs | Xylose, Galactose, Glucose, Glucuronic acid, and minor amounts of Mannose, Rhamnose, and Arabinose | Viscoelastic gels | [50,51] |
Dictyosphaerium chlorelloides | Extracellular Polysaccharides (EPSs) | Galactose, Manose, Rhamnose, glucuronic acid | Viscous hydrocolloids | [22] |
Gel-Forming Agents from Microalgae | Gel-Forming End-Products | References |
---|---|---|
Sulfated Polysaccharides | Hydrogels, Biofilms, Food-gels, Film formation | [4,63,65,69,77,86,103] |
Exopolysaccharides | Gel matrices, Encapsulation systems, Stabilizing agents in food | [46,71,73,76] |
Protein Isolates | Protein-based gels, Functional coatings, Bioactive films | [11,60,104] |
Polysaccharides (non-sulfated) | Food gels with potential bioactivity, Biofilms | [20,21,28,105] |
Combined Polymers (e.g., Sulfated Polysaccharides + Chitosan) | Hybrid hydrogels, Enhanced barrier and mechanical properties for packaging | [11,29,30,31,37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terpou, A.; Dahiya, D.; Nigam, P.S. Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae. Gels 2025, 11, 569. https://doi.org/10.3390/gels11080569
Terpou A, Dahiya D, Nigam PS. Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae. Gels. 2025; 11(8):569. https://doi.org/10.3390/gels11080569
Chicago/Turabian StyleTerpou, Antonia, Divakar Dahiya, and Poonam Singh Nigam. 2025. "Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae" Gels 11, no. 8: 569. https://doi.org/10.3390/gels11080569
APA StyleTerpou, A., Dahiya, D., & Nigam, P. S. (2025). Prospects of Gels for Food Applications from Marine Sources: Exploring Microalgae. Gels, 11(8), 569. https://doi.org/10.3390/gels11080569