Synthesis and Characterization of New Functional Photo Cross-Linkable Smart Polymers Containing Vanillin Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Functional Monomers and Polymers
Polymer | DMIA (mol %) | 2 (mol %) | 4a (mol %) | 4b (mol %) | Yield (%) | |
---|---|---|---|---|---|---|
1H NMR | UV | |||||
VA-05-10 | 5.9 | 6.0 | 11.1 | 83 | ||
DE-05-10 | 4.3 | 4.2 | 3.0 | 60 | ||
DE-05-15 | 4.5 | 4.7 | 4.8 | 57 | ||
DE-05-20 | 4.8 | 4.8 | 6.5 | 58 | ||
DM-05-10 | 4.6 | 4.7 | 3.6 | 66 | ||
DM-05-15 | 4.3 | 4.4 | 4.2 | 56 | ||
DM-05-20 | 4.5 | 4.5 | 4.7 | 43 |
Polymer | Mn (g/mol) | PD | Tg (°C) | Tc (°C) |
---|---|---|---|---|
VA-05-10 | 20,700 | 3.1 | 133.5 | 13.8 |
DE-05-10 | 7600 | 1.7 | 131.0 | 35.0 |
DE-05-15 | 5600 | 1.6 | 145.0 | 42.5 |
DE-05-20 | 6100 | 1.5 | 146.0 | 46.6 |
DM-05-10 | 6500 | 2.0 | 128.5 | 36.0 |
DM-05-15 | 5500 | 1.8 | 134.0 | 39.0 |
DM-05-20 | 4900 | 1.9 | 135.8 | 35.0 |
2.2. Photo Cross-Linking and Formation of Hydrogel Thin Film
3. Conclusions
4. Experimental Section
4.1. Instrumentation
4.2. Materials
4.2.1. Synthesis of the Dimethylmaleimidoacrylate Photo Cross-Linker
4.2.2. Synthesis of Thioacetic Acid 3-(3,4-Dimethyl-2,5-dioxo-2,5-dihydro-pyrrol-yl)-Propyl Ester Adhesion Promoter
4.2.3. Synthesis of 4-Formyl-2-Methoxyphenylacrylate
4.2.4. Synthesis of 2-((Diethylamino)methyl)-4-Formyl-6-Methoxyphenyl Acrylate (2)
4.2.5. Synthesis of 2-((Dimethylamino)methyl)-4-Formyl-6-Methoxyphenyl Acrylate (4)
4.2.6. Synthesis of Photo Cross-Linkable Poly(NIPAAm-co-DEAMVA-co-DMIA) (5) and Poly(NIPAAm-co-DMAMVA-co-DMIA) (6)
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sato, E.; Masuda, Y.; Kadota, J.; Nishiyama, T.; Horibe, H. Dual stimuli-responsive homopolymers: Thermo- and photo-responsive properties of coumarin-containing polymers in organic solvents. Eur. Polym. J. 2015, 69, 605–615. [Google Scholar]
- Chen, J.-K.; Chang, C.-J. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials 2014, 7, 805–875. [Google Scholar] [CrossRef]
- Guenther, M.; Kuckling, D.; Corten, C.; Gerlach, G.; Sorber, J.; Suchaneck, G.; Arndt, K. Chemical sensors based on multiresponsive block copolymer hydrogels. Sens. Actuat. B Chem. 2007, 126, 97–106. [Google Scholar] [CrossRef]
- Matsukuma, D.; Yamamoto, K.; Aoyagi, T. Stimuli-responsive properties of N-isopropylacrylamide-based ultrathin hydrogel films prepared by photo-cross-linking. Langmuir 2006, 22, 5911–5915. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pang, X.-H.; Dong, C.-M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host–guest chemistry. Adv. Funct. Mater. 2010, 20, 579–586. [Google Scholar] [CrossRef]
- Schattling, P.; Jochum, F.D.; Theato, P. Multi-stimuli responsive polymers—The all-in-one talents. Polym. Chem. 2014, 5, 25–36. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Zhou, Y.; Dong, Y.; Chen, W. Novel multi-responsive polymer materials: When ionic liquids step in. Eur. Polym. J. 2015, 69, 441–448. [Google Scholar] [CrossRef]
- Bulmus, V.; Ding, Z.; Long, C.J.; Stayton, P.S.; Hoffman, A.S. Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin. Bioconj. Chem. 2000, 11, 78–83. [Google Scholar] [CrossRef]
- Brazel, C.S.; Peppas, N.A. Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 1995, 28, 8016–8020. [Google Scholar] [CrossRef]
- Zareie, H.M.; Volga Bulmus, E.; Gunning, A.P.; Hoffman, A.S.; Piskin, E.; Morris, V.J. Investigation of a stimuli-responsive copolymer by atomic force microscopy. Polymer 2000, 41, 6723–6727. [Google Scholar] [CrossRef]
- Kuckling, D.; Adler, H.-J.; Arndt, K.-F.; Ling, L.; Habicher, W.D. Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide) copolymers. Macromol. Chem. Phys. 2000, 201, 273–280. [Google Scholar] [CrossRef]
- Leung, M.F.; Zhu, J.; Harris, F.W.; Li, P. Novel synthesis and properties of smart core-shell microgels. Macromol. Symp. 2005, 226, 177–186. [Google Scholar] [CrossRef]
- Rodríguez-Cabello, C.J.; Reguera, J.; Girotti, A.; Alonso, M.; Testera, A.M. Developing functionality in elastin-like polymers by increasing their molecular complexity: The power of the genetic engineering approach. Prog. Polym. Sci. 2005, 30, 1119–1145. [Google Scholar] [CrossRef]
- Alonso, M.; Reboto, V.; Guiscardo, L.; San Martín, A.; Rodríguez-Cabello, J.C. Spiropyran derivative of an elastin-like bioelastic polymer: Photoresponsive molecular machine to convert sunlight into mechanical work. Macromolecules 2000, 33, 9480–9482. [Google Scholar] [CrossRef]
- Kurata, K.; Dobashi, A. Novel temperature- and pH-responsive linear polymers and crosslinked hydrogels comprised of acidic l-α-amino acid derivatives. J. Macromol. Sci. A 2004, 41, 143–164. [Google Scholar] [CrossRef]
- Ramkissoon-Ganorkar, C.; Baudys, M.; Kim, S.W. Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. J Biomater. Sci. Polym. Ed. 2000, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.K.; Kim, S.Y.; Kim, S.J.; Lee, Y.M. pH/temperature-responsive semi-ipn hydrogels composed of alginate and poly(N-isopropylacrylamide). J. Appl. Polym. Sci. 2002, 83, 1128–1139. [Google Scholar] [CrossRef]
- Benrebouh, A.; Avoce, D.; Zhu, X.X. Thermo- and pH-sensitive polymers containing cholic acid derivatives. Polymer 2001, 42, 4031–4038. [Google Scholar] [CrossRef]
- Ning, L.; Min, Y.; Maolin, Z.; Jiuqiang, L.; Hongfei, H. Radiation synthesis and characterization of polydmaema hydrogel. Radiat. Phys. Chem. 2001, 61, 69–73. [Google Scholar] [CrossRef]
- Gan, L.H.; Gan, Y.Y.; Deen, G.R. Poly(N-acryloyl-N′-propylpiperazine): A new stimuli-responsive polymer. Macromolecules 2000, 33, 7893–7897. [Google Scholar] [CrossRef]
- Dumitriu, R.P.; Mitchell, G.R.; Vasile, C. Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polym. Int. 2011, 60, 222–233. [Google Scholar] [CrossRef]
- Chen, D.; Liu, H.; Kobayashi, T.; Yu, H. Multiresponsive reversible gels based on a carboxylic azo polymer. J. Mater. Chem. 2010, 20, 3610–3614. [Google Scholar] [CrossRef]
- Pasparakis, G.; Vamvakaki, M. Multiresponsive polymers: Nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym. Chem. 2011, 2, 1234–1248. [Google Scholar] [CrossRef]
- Beck, J.B.; Rowan, S.J. Multistimuli, multiresponsive metallo-supramolecular polymers. J. Am. Chem. Soc. 2003, 125, 13922–13923. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv. Mater. 2007, 19, 2520–2524. [Google Scholar] [CrossRef]
- Bousquet, A.; Ibarboure, E.; Teran, F.J.; Ruiz, L.; Garay, M.T.; Laza, J.M.; Vilas, J.L.; Papon, E.; Rodríguez-Hernández, J. pH responsive surfaces with nanoscale topography. J. Polym. Sci. A Polym. Chem. 2010, 48, 2982–2990. [Google Scholar] [CrossRef]
- Shibayama, M.; Tanaka, T. Volume Phase Transition and Related Phenomena of Polymer Gels. In Responsive Gels: Volume Transitions I; Dušek, K., Ed.; Springer: Berlin, Germany; Heidelberg, Germany, 1993; Volume 109, pp. 1–62. [Google Scholar]
- Chen, G.; Hoffman, A.S. Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature 1995, 373, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S.; Stayton, P.S.; Bulmus, V.; Chen, G.; Chen, J.; Cheung, C.; Chilkoti, A.; Ding, Z.; Dong, L.; Fong, R.; et al. Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res. 2000, 52, 577–586. [Google Scholar] [CrossRef]
- Costa, E.; Coelho, M.; Ilharco, L.M.; Aguiar-Ricardo, A.; Hammond, P.T. Tannic acid mediated suppression of pnipaam microgels thermoresponsive behavior. Macromolecules 2011, 44, 612–621. [Google Scholar] [CrossRef]
- Yang, H.-W.; Chen, J.-K.; Cheng, C.-C.; Kuo, S.-W. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition. Appl. Surf. Sci. 2013, 271, 60–69. [Google Scholar] [CrossRef]
- Gauthier, M.A.; Gibson, M.I.; Klok, H.-A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 2009, 48, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.D.; Tiller, J.C. Contact-active antimicrobial coatings derived from aqueous suspensions. Angew. Chem. Int. Ed. 2006, 45, 6759–6762. [Google Scholar] [CrossRef] [PubMed]
- Zolotukhin, M.G.; Colquhoun, H.M.; Sestiaa, L.G.; Rueda, D.R.; Flot, D. One-pot synthesis and characterization of soluble poly(aryl ether-ketone)s having pendant carboxyl groups. Macromolecules 2003, 36, 4766–4771. [Google Scholar] [CrossRef]
- Zou, Y.; Brooks, D.E.; Kizhakkedathu, J.N. A novel functional polymer with tunable lcst. Macromolecules 2008, 41, 5393–5405. [Google Scholar] [CrossRef]
- Schneider, B.H.; Dickinson, E.L.; Vach, M.D.; Hoijer, J.V.; Howard, L.V. Highly sensitive optical chip immunoassays in human serum. Biosens. Bioelectron. 2000, 15, 13–22. [Google Scholar] [CrossRef]
- Vaisocherová, H.; Yang, W.; Zhang, Z.; Cao, Z.; Cheng, G.; Piliarik, M.; Homola, J.; Jiang, S. Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal. Chem. 2008, 80, 7894–7901. [Google Scholar] [CrossRef] [PubMed]
- Wark, A.W.; Lee, H.J.; Corn, R.M. Long-range surface plasmon resonance imaging for bioaffinity sensors. Anal. Chem. 2005, 77, 3904–3907. [Google Scholar] [CrossRef] [PubMed]
- Lakhiari, H.; Okano, T.; Nurdin, N.; Luthi, C.; Descouts, P.; Muller, D.; Jozefonvicz, J. Temperature-responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica. Biochim. Biophys. Acta 1998, 1379, 303–313. [Google Scholar] [CrossRef]
- Kanazawa, H.; Yamamoto, K.; Matsushima, Y.; Takai, N.; Kikuchi, A.; Sakurai, Y.; Okano, T. Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica. Anal. Chem. 1996, 68, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Eckert, F.; Boyko, V.; Pich, A. Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 2007, 3, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Xulu, P.M.; Filipcsei, G.; Zrínyi, M. Preparation and responsive properties of magnetically soft poly(N-isopropylacrylamide) gels. Macromolecules 2000, 33, 1716–1719. [Google Scholar] [CrossRef]
- Mateescu, A.; Wang, Y.; Dostalek, J.; Jonas, U. Thin hydrogel films for optical biosensor applications. Membranes 2012, 2, 40. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wu, H.; Sui, X.; Hempenius, M.A.; Julius Vancso, G. Thin film hydrogels from redox responsive poly(ferrocenylsilanes): Preparation, properties, and applications in electrocatalysis. Eur. Polym. J. 2015, 72, 535–542. [Google Scholar] [CrossRef]
- Tokarev, I.; Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 2009, 5, 511–524. [Google Scholar] [CrossRef]
- Harmon, M.E.; Kuckling, D.; Pareek, P.; Frank, C.W. Photo-cross-linkable pnipaam copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers. Langmuir 2003, 19, 10947–10956. [Google Scholar] [CrossRef]
- Kuckling, D.; Harmon, M.E.; Frank, C.W. Photo-cross-linkable pnipaam copolymers. 1. Synthesis and characterization of constrained temperature-responsive hydrogel layers. Macromolecules 2002, 35, 6377–6383. [Google Scholar] [CrossRef]
- Harmon, M.E.; Kuckling, D.; Frank, C.W. Photo-cross-linkable pnipaam copolymers. 2. Effects of constraint on temperature and pH-responsive hydrogel layers. Macromolecules 2003, 36, 162–172. [Google Scholar] [CrossRef]
- Zhang, N.; Knoll, W. Thermally responsive hydrogel films studied by surface plasmon diffraction. Anal. Chem. 2009, 81, 2611–2617. [Google Scholar] [CrossRef] [PubMed]
- Anac, I.; Aulasevich, A.; Junk, M.J.N.; Jakubowicz, P.; Roskamp, R.F.; Menges, B.; Jonas, U.; Knoll, W. Optical characterization of co-nonsolvency effects in thin responsive pnipaam-based gel layers exposed to ethanol/water mixtures. Macromol. Chem. Phys. 2010, 211, 1018–1025. [Google Scholar] [CrossRef]
- Chan, C.-H.; Chen, J.-K.; Chang, F.-C. Specific DNA extraction through fluid channels with immobilization of layered double hydroxides on polycarbonate surface. Sens. Actuat. B Chem. 2008, 133, 327–332. [Google Scholar] [CrossRef]
- Chen, J.-K.; Li, J.-Y. Fabrication of DNA extraction device with tethered poly(N-isopropylacrylamide) brushes on silicon surface for a specific DNA detection. Sens. Actuat. B Chem. 2010, 150, 314–320. [Google Scholar] [CrossRef]
- Hosoya, K.; Kubo, T.; Tanaka, N.; Haginaka, J. A possible purification method of DNAs’ fragments from humic matters in soil extracts using novel stimulus responsive polymer adsorbent. J. Pharm. Biomed. Anal. 2003, 30, 1919–1922. [Google Scholar] [CrossRef]
- Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 2006, 45, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, X.; Han, Y. Intelligent reversible nanoporous antireflection film by solvent-stimuli-responsive phase transformation of amphiphilic block copolymer. Langmuir 2012, 28, 10584–10591. [Google Scholar] [CrossRef] [PubMed]
- Ebara, M.; Yamato, M.; Hirose, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature. Biomacromolecules 2003, 4, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Yakushiji, T.; Sakai, K.; Kikuchi, A.; Aoyagi, T.; Sakurai, Y.; Okano, T. Graft architectural effects on thermoresponsive wettability changes of poly(N-isopropylacrylamide)-modified surfaces. Langmuir 1998, 14, 4657–4662. [Google Scholar] [CrossRef]
- Chen, J.-K.; Wang, J.-H.; Chang, J.-Y.; Fan, S.-K. Thermally switchable adhesions of polystyrene-block-poly(N-isopropylacrylamide) copolymer pillar array mimicking climb attitude of geckos. Appl. Phys. Lett. 2012, 101, 123701. [Google Scholar] [CrossRef]
- Chang, C.-J.; Kuo, E.-H. Roughness-enhanced thermal-responsive surfaces by surface-initiated polymerization of polymer on ordered zno pore-array films. Thin Solid Films 2010, 519, 1755–1760. [Google Scholar] [CrossRef]
- Chen, J.-K.; Qui, J.-Q. Patterned 3D assembly of Au nanoparticle on silicon substrate by colloid lithography. J. Nanopart. Res. 2012, 14, 1–14. [Google Scholar] [CrossRef]
- Huang, H.L.; Chen, J.-K.; Houng, M.P. Fabrication of two-dimensional periodic relief grating of tethered polystyrene on silicon surface as solvent sensors. Sens. Actuat. B Chem. 2013, 177, 833–840. [Google Scholar] [CrossRef]
- Chen, J.-K.; Bai, B.-J. pH-switchable optical properties of the one-dimensional periodic grating of tethered poly(2-dimethylaminoethyl methacrylate) brushes on a silicon surface. J. Phys. Chem. C 2011, 115, 21341–21350. [Google Scholar] [CrossRef]
- Brazinha, C.; Barbosa, D.S.; Crespo, J.G. Sustainable recovery of pure natural vanillin from fermentation media in a single pervaporation step. Green Chem. 2011, 13, 2197–2203. [Google Scholar] [CrossRef]
- Fries, D.M.; Voitl, T.; von Rohr, P.R. Liquid extraction of vanillin in rectangular microreactors. Chem. Eng. Technol. 2008, 31, 1182–1187. [Google Scholar] [CrossRef]
- Lora, J.H.; Glasser, W.G. Recent industrial applications of lignin: A sustainable alternative to nonrenewable materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Voitl, T.; Rudolf von Rohr, P. Oxidation of lignin using aqueous polyoxometalates in the presence of alcohols. ChemSusChem 2008, 1, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Mialon, L.; Pemba, A.G.; Miller, S.A. Biorenewable polyethylene terephthalate mimics derived from lignin and acetic acid. Green Chem. 2010, 12, 1704–1706. [Google Scholar] [CrossRef]
- Zhang, C.; Madbouly, S.A.; Kessler, M.R. Renewable polymers prepared from vanillin and its derivatives. Macromol. Chem. Phys. 2015, 216, 1816–1822. [Google Scholar] [CrossRef]
- Meylemans, H.A.; Harvey, B.G.; Reams, J.T.; Guenthner, A.J.; Cambrea, L.R.; Groshens, T.J.; Baldwin, L.C.; Garrison, M.D.; Mabry, J.M. Synthesis, characterization, and cure chemistry of renewable bis(cyanate) esters derived from 2-methoxy-4-methylphenol. Biomacromolecules 2013, 14, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Renbutsu, E.; Okabe, S.; Omura, Y.; Nakatsubo, F.; Minami, S.; Saimoto, H.; Shigemasa, Y. Synthesis of UV-curable chitosan derivatives and palladium (II) adsorption behavior on their UV-exposed films. Carbohydr. Polym. 2007, 69, 697–706. [Google Scholar] [CrossRef]
- Stanzione, J.F.; Sadler, J.M.; la Scala, J.J.; Wool, R.P. Lignin model compounds as bio-based reactive diluents for liquid molding resins. ChemSusChem 2012, 5, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley: New York, NY, USA; Chichester, UK, 2004. [Google Scholar]
- Gupta, S.; Kuckling, D.; Kretschmer, K.; Choudhary, V.; Adler, H.-J. Synthesis and characterization of stimuli-sensitive micro- and nanohydrogels based on photocrosslinkable poly(dimethylaminoethyl methacrylate). J. Polym. Sci. A Polym. Chem. 2007, 45, 669–679. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaty, M.S.A.; Kuckling, D. Synthesis and Characterization of New Functional Photo Cross-Linkable Smart Polymers Containing Vanillin Derivatives. Gels 2016, 2, 3. https://doi.org/10.3390/gels2010003
Abdelaty MSA, Kuckling D. Synthesis and Characterization of New Functional Photo Cross-Linkable Smart Polymers Containing Vanillin Derivatives. Gels. 2016; 2(1):3. https://doi.org/10.3390/gels2010003
Chicago/Turabian StyleAbdelaty, Momen S.A., and Dirk Kuckling. 2016. "Synthesis and Characterization of New Functional Photo Cross-Linkable Smart Polymers Containing Vanillin Derivatives" Gels 2, no. 1: 3. https://doi.org/10.3390/gels2010003
APA StyleAbdelaty, M. S. A., & Kuckling, D. (2016). Synthesis and Characterization of New Functional Photo Cross-Linkable Smart Polymers Containing Vanillin Derivatives. Gels, 2(1), 3. https://doi.org/10.3390/gels2010003