Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Organogelators on In Vitro SPF and UVA-PF
2.2. Instrumental Texture Analysis (Hardness, Stiffness, Firmness and Pay-Off) and Stability Studies
2.3. The Combined Use of Thermal and Rheological Analyses on the Dynamic Structure Network of Lipsticks
2.4. Relationships between Descriptive Sensory and Instrumental Analysis of Organogel-Based Lipsticks
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Organogel Lipsticks
4.3. In Vitro Sun Protection Factor (SPF) Test Method
4.4. Mechanical Properties
4.5. Thermal Properties
4.6. Rheological Studies
4.7. Sensory Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hill, S.E.; Rodeheffer, C.D.; Griskevicius, V.; Durante, K.; White, A.E. Boosting beauty in an economic decline: Mating, spending, and the lipstick effect. J. Pers. Soc. Psychol. 2012, 103, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Stephen, I.D.; McKeegan, A.M. Lip colour affects perceived sex typicality and attractiveness of human faces. Perception 2010, 39, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Amberg, N.; Fogarassy, C. Communication green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, C.F.; Wanser, R.; Mahalingam, H.; Moore, D.J.; Wang, X.; Lin, C.B.; Shanga, G.; Grove, G.; Rawlings, A.V. A series of in vitro and human studies of a novel lip cream formulation for protecting against environmental triggers of recurrent herpes labialis. Clin. Cosmet. Investig. Dermatol. 2019, 12, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Westfall, A.; Sigurdson, G.T.; Giusti, M.M.; Antioxidant, U.V. protection, and antiphotoaging properties of anthocyanin-pigmented lipstick formulations. J. Cosmet. Sci. 2019, 70, 63–76. [Google Scholar] [PubMed]
- Poucher, W.A.; Butler, H. Poucher’s Perfumes, Cosmetics and Soaps: Volume 3: Cosmetics; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Pan, S.; Germann, N. Thermal and mechanical properties of industrial benchmark lipstick prototypes. Thermochim. Acta 2019, 679, 178332–178338. [Google Scholar] [CrossRef]
- Chuberre, B.; Araviiskaia, E.; Bieber, T.; Barbaud, A. Mineral oils and waxes in cosmetics: An overview mainly based on the current European regulations and the safety profile of these compounds. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Mandu, C.; Arellano, D.; Santana, M.H.; Fernandes, G. Waxes used as structuring agents for food organogels: A review. Grasas Y Aceites 2020, 71, 344–345. [Google Scholar] [CrossRef]
- Siraj, N.; Shabbir, M.A.; Ahmad, T.; Sajjad, A.; Khan, M.R.; Khan, M.I.; Butt, M.S. Organogelators as a saturated fat replacer for structuring edible oils. Int. J. Food Prop. 2015, 18, 1973–1989. [Google Scholar] [CrossRef]
- Mutlu, H.; Meier, M.A.R. Castor oil as a renewable resource for the chemical industry. Eur. J. Lipid Sci. Technol. 2010, 112, 10–30. [Google Scholar] [CrossRef]
- Co, E.; Marangoni, A. Organogels: An alternative edible oil-structuring method. J. Am. Oil Chem. Soc. 2012, 89, 749–780. [Google Scholar]
- Kirilov, P.; Rum, S.; Gilbert, E.; Roussel, L.; Salmon, D.; Abdayem, R.; Serre, C.; Villa, C.; Haftek, M.; Falson, F.; et al. Aqueous dispersions of organogel nanoparticles—Potential systems for cosmetic and dermo-cosmetic applications. Int. J. Cosmetic. Sci. 2014, 36, 336–346. [Google Scholar] [CrossRef]
- Okesola, B.; Vieira, V.; Cornwell, D.; Whitelaw, N.; Smith, D. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives—Efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter. 2015, 11, 4768–4787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukas, T.; Malle, G. Compounds of Dibenzylidene Sorbitol Ester Type, Process of Preparation, Use, Compositions Comprising Them and Cosmetic Treatment Method. WO Patent 10743; L’oréal, Asnières-sur-Seine, 15 August 2013. [Google Scholar]
- Esposito, C.L.; Kirilov, P.; Roullin, V.G. Organogels, promising drug delivery systems: An update of state-of-the-art and recent applications. J. Control. Release 2017, 271, 1–20. [Google Scholar] [CrossRef]
- Pan, S.; Germann, N. Mechanical response of industrial benchmark lipsticks under large-scale deformations. Acta Mech. 2020, 231, 3031–3042. [Google Scholar] [CrossRef]
- Lai, W.-C.; Wu, C.-H. Studies on the self-assembly of neat DBS and DBS/PPG organogels. J. Appl. Polym. Sci. 2010, 115, 1113–1119. [Google Scholar] [CrossRef]
- Toro-Vazquez, J.F.; Morales-Rueda, J.; Torres-Martínez, A.; Charó-Alonso, M.A.; Mallia, V.A.; Weiss, R.G. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir 2013, 29, 7642–7654. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.C.; Aminah, A. Sensory analysis of lipstick. Int. J. Cosmet. Sci. 2011, 33, 245–250. [Google Scholar] [CrossRef]
- Kasparaviciene, G.; Savickas, A.; Kalveniene, Z.; Velziene, S.; Kubiliene, L.; Bernatoniene, J. Evaluation of beeswax lnfluence on physical properties of lipstick using instrumental and sensory methods. Evid. Based Complementary Altern. Med. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Vieira, G.S.; Lavarde, M.; Fréville, V.; Rocha-Filho, P.A.; Pensé-Lhéritier, A.-M. Combining sensory and texturometer parameters to characterize different type of cosmetic ingredients. Int. J. Cosmet. Sci. 2020, 42, 156–166. [Google Scholar] [CrossRef]
- Chaouat, C.; Kirilov, P.; Franceschi-Massant, S.; Perez, E.; Giraud, I.; Rico-Lattes, I. Nanoparticles of gelled sunscreen oil: Elaboration and physicochemical characterization. Jorn. Com. Español Deterg. 2012, 24, 94–101. [Google Scholar]
- Moyal, D.D.; Fourtanier, A.M. Broad-spectrum sunscreens provide better protection from solar ultraviolet–simulated radiation and natural sunlight–induced immunosuppression in human beings. J. Am. Acad. Dermatol. 2008, 58, S149–S154. [Google Scholar] [CrossRef]
- Khan, A.Q.; Travers, J.B.; Kemp, M.G. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ. Mol. Mutagen. 2018, 59, 438–460. [Google Scholar] [CrossRef] [PubMed]
- Pelizzo, M.; Zattra, E.; Nicolosi, P.; Peserico, A.; Garoli, D.; Alaibac, M. In vitro evaluation of sunscreens: An update for the clinicians. ISRN Dermatol. 2012, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale Wilson, B.; Moon, S.; Armstrong, F. Comprehensive review of ultraviolet radiation and the current status on sunscreens. J. Clin. Aesthet. Dermatol. 2012, 5, 18–23. [Google Scholar]
- Imai, T.; Nakamura, K.; Shibata, M. Relationship between the hardness of an oil–wax gel and the surface structure of the wax crystals. Colloids Surf. A Physicochem. Eng. Asp. 2001, 194, 233–237. [Google Scholar] [CrossRef]
- Huynh, A.; Maktabi, B.; Reddy, C.M.; O’Neil, G.W.; Chandler, M.; Baki, G. Evaluation of alkenones, a renewably sourced, plant-derived wax as a structuring agent for lipsticks. Int. J. Cosmet. Sci. 2020, 42, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Bui, H.S.; El-Khouri, R.J. Solid Lipstick Composition Having Improved Hardness. WO Patent 193415; L’Oréal, Alexandria, VA, USA, 23 December 2015. [Google Scholar]
- Bui, H.S.; Kanji, M. Emulsion Lipstick Composition. WO Patent 077889; L’Oréal, Alexandria, VA, USA, 8 July 2010. [Google Scholar]
- Roberto, C.; Ferrari, V.; Mattox, B.; Pinzon, C.O.; Thau, P. Cosmetic Composition Comprising Hetero Polymers and a Solid Substance and Method of Using Same. WO Patent 20022047608A3; L’Oréal SA, Paris, France, 24 June 2002. [Google Scholar]
- McIntosh, K.; Smith, A.; Young, L.; Leitch, M.; Tiwari, A.; Reddy, C.; O’Neil, G.; Liberatore, M.; Chandler, M.; Baki, G. Alkenones as a Promising Green Alternative for Waxes in Cosmetics and Personal Care Products. Cosmetics 2018, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Richard, C.; Tille-Salmon, B.; Mofid, Y. Contribution to interplay between a delamination test and a sensory analysis of mid-range lipsticks. Int. J. Cosmet. Sci. 2016, 38, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Ghan, S.Y.; Siow, L.F.; Tan, C.P.; Cheong, K.W.; Thoo, Y.Y. Influence of Soya Lecithin, Sorbitan and Glyceryl Monostearate on Physicochemical Properties of Organogels. Food Biophys. 2020, 15, 386–395. [Google Scholar] [CrossRef]
- Martinez, R.M.; Rosado, C.; Velasco, M.V.R.; Lannes, S.C.S.; Baby, A.R. Main features and applications of organogels in cosmetics. Int. J. Cosmet. Sci. 2019, 41, 109–117. [Google Scholar] [CrossRef] [Green Version]
- A Consumer Voice Report. Lipsticks More to Them Than the Colour and the Cream; Consumer Voice: Ontario, ON, Canada, 2014; pp. 7–12. [Google Scholar]
- Maier, H.; Schauberger, G.; Brunnhofer, K.; Hönigsmann, H. Assessment of thickness of photoprotective lipsticks and frequency of reapplication: Results from a laboratory test and a field experiment. Br. J. Dermatol. 2003, 148, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Shinomiya, K.; Okawara, H.; Kikuchi, K.; Mayama, H.; Nonomura, Y. Friction dynamics of hydrogel substrates with a fractal surface: Effects of thickness. ACS Omega 2020, 5, 16406–16412. [Google Scholar] [CrossRef] [PubMed]
- Tavernier, I.; Doan, C.D.; Van de Walle, D.; Danthine, S.; Rimaux, T.; Dewettinck, K. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. RSC Adv. 2017, 7, 12113–12125. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.R.; Mankoc, B.; Bin Sintang, M.D.; Lesaffer, A.; Dewettinck, K. Fumed silica-based organogels and ‘aqueous-organic’ bigels. RSC Adv. 2015, 5, 9703–9708. [Google Scholar] [CrossRef] [Green Version]
- Carranca, M.; Martín Prieto, V.; Kirilov, P. Colloidal Dispersions of Gelled Lipid Nanoparticles (GLN): Concept and Potential Applications. Gels 2017, 3, 33–45. [Google Scholar]
- Rocha, J.C.B.; Lopes, J.D.; Mascarenhas, M.C.N.; Arellano, D.B.; Guerreiro, L.M.R.; da Cunha, R.L. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 2013, 50, 318–323. [Google Scholar] [CrossRef] [Green Version]
- Civille, G.; Dus, C. Evaluating tactile properties of skincare products: A descriptive analysis technique. Cosmet. Toilet. 1991, 106, 83–88. [Google Scholar]
- Buehler, D.M.; Versteegh, M.A.; Matson, K.D.; Tieleman, B.I. One problem, many solutions: Simple statistical approaches help unravel the complexity of the immune system in an ecological context. PLoS ONE 2011, 6, e18592. [Google Scholar] [CrossRef]
- International Standards Organization. ISO 24443:2012: Determination of Sunscreen UVA Photoprotection In Vitro. [Publication Date: June 2012]. Available online: https://www.iso.org/standard/46522.html (accessed on 10 November 2020).
Formulations | Tgel (°C) | Tmrheology (°C) | Tmmelting point (°C) | Maximum G′ Value (Pa) | Temperature at Which Max. G′ Value Was Recorded (°C) |
---|---|---|---|---|---|
L1 | 119.6 ± 0.5 | 120.3 ± 0.6 | >95 | 10,502 | 32 |
L2 | 61.8 ± 0.7 | 62.1 ± 0.4 | 62 | 6985 | 32 |
L3 | 127.2 ± 1.1 | 127.5 ± 0.5 | >95 | 12,398 | 63 |
L4 | 50.7 ± 0.4 | 50.6 ± 0.7 | 49 | 963 | 37 |
L5 | 56.6 ± 0.4 | 55.7 ± 0.6 | 54 | 1295 | 36 |
Formulations | Effects | Statistics | Attributes | ||||
---|---|---|---|---|---|---|---|
Spreadability | Hardness | Opacity | Glossiness | Greasiness | |||
L1 | Means | 7.1 | 4.3 | 4.2 | 7.1 | 5.6 | |
SD | 0.64 | 0.92 | 1.43 | 0.87 | 1.64 | ||
L2 | Means | 8.1 | 8.1 | 3.3 | 1.0 | 5.5 | |
SD | 0.82 | 0.82 | 1.01 | 0.0 | 1.77 | ||
L3 | Means | 8.1 | 6.1 | 4.3 | 7.5 | 1.0 | |
SD | 0.82 | 1.33 | 0.92 | 1.09 | 0.0 | ||
L4 | Means | 6.7 | 4.3 | 6.3 | 7.0 | 7.8 | |
SD | 1.01 | 1.24 | 1.13 | 1.09 | 1.24 | ||
L5 | Means | 7.9 | 6.8 | 7.1 | 4.0 | 7.5 | |
SD | 0.96 | 1.15 | 0.64 | 1.53 | 1.37 | ||
Panellist | F value | 11.22 | 13.89 | 10.24 | 7.35 | 9.77 | |
Product | 27.11 | 125.87 | 103.04 | 257.85 | 176.16 | ||
Panellist | p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Product | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Ingredients | Functional Category | Quantity (% w/w) | ||||
---|---|---|---|---|---|---|
L1 | L2 | L3 | L4 | L5 | ||
Phase A | ||||||
Vaseline oil | Occlusive agent | 0 | 40 | 48.5 | 0 | L’Oréal Nude, TD023, Color Riche 235 |
Castor oil | Moisturizer | 14 | 20 | 20 | 15 | |
Almond oil | Emollient | 45 | 20 | 20 | 45 | |
White petrolatum | Lubricant | 30 | - | - | 30 | |
DBS | LMOG | 1 | - | 1.5 | - | |
12-HSA | LMOG | - | 10 | - | - | |
Phase B | ||||||
Beeswax | Thickening agent | 5 | 5 | 5 | 5 | |
Pigments | Colouring | 5 | 5 | 5 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, C.L.; Kirilov, P. Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics. Gels 2021, 7, 97. https://doi.org/10.3390/gels7030097
Esposito CL, Kirilov P. Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics. Gels. 2021; 7(3):97. https://doi.org/10.3390/gels7030097
Chicago/Turabian StyleEsposito, Cloé L., and Plamen Kirilov. 2021. "Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics" Gels 7, no. 3: 97. https://doi.org/10.3390/gels7030097
APA StyleEsposito, C. L., & Kirilov, P. (2021). Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics. Gels, 7(3), 97. https://doi.org/10.3390/gels7030097