The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Components and Compositions
2.2. Ionogel Synthesis
Photopolymerization Kinetics
2.3. Mechanical and Electrochemical Properties
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
- Solvatochromic Solvent Parameters
- 2.
- Ionogels Samples Synthesis
- 3.
- Differential Scanning Calorimetry-DSC
- 4.
- Isothermal Differential Scanning Photocalorimetry (Photo-DSC)
- 5.
- Puncture Resistance
- 6.
- Infrared Spectroscopy
- 7.
- Ionic Conductivity
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Singh, M.P.; Singh, R.K.; Chandra, S. Ionic Liquids Confined in Porous Matrices: Physicochemical Properties and Applications. Prog. Mater. Sci. 2014, 64, 73–120. [Google Scholar] [CrossRef]
- Le Bideau, J.; Viau, L.; Vioux, A. Ionogels, Ionic Liquid Based Hybrid Materials. Chem. Soc. Rev. 2011, 40, 907–925. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Naga, N.; Kawakami, M.; Furukawa, H. Extremely Soft, Conductive, and Transparent Ionic Gels by 3D Optical Printing. Macromol. Chem. Phys. 2018, 219, 1800216. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Hu, W.; Qiao, J.; Zhang, L.; Zhang, J. A Review of Electrolyte Materials and Compositions for Electrochemical Supercapacitors. Chem. Soc. Rev. 2015, 44, 7484–7539. [Google Scholar] [CrossRef]
- Sen, S.; Malunavar, S.; Radhakrishnan, D.; Narayana, C.; Soudant, P.; Bouchet, R.; Bhattacharyya, A.J. Non-Trivial Network Driven Modifications of Ion Transport in an Ionic Liquid Confined Inside a Polymer System. Mol. Syst. Des. Eng. 2016, 1, 391–401. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Zgrzeba, A.; Lota, G.; Kopczyński, K.; Andrzejewska, E. Ionogels by Thiol-Ene Photopolymerization in Ionic Liquids: Formation, Morphology and Properties. Polymer 2019, 160, 272–281. [Google Scholar] [CrossRef]
- Lewandowska, A.; Gajewski, P.; Szcześniak, K.; Sadej, M.; Patelski, P.; Marcinkowska, A. Modification of Thiol-Ene Ionogels with Octakis (Methacryloxypropyl) Silsesquioxane. Polymers 2021, 13, 385. [Google Scholar] [CrossRef]
- Cramer, N.B.; Reddy, S.K.; O’Brien, A.K.; Bowman, C.N. Thiol−Ene Photopolymerization Mechanism and Rate Limiting Step Changes for Various Vinyl Functional Group Chemistries. Macromolecules 2003, 36, 7964–7969. [Google Scholar] [CrossRef]
- Scott, T.F.; Kloxin, C.J.; Draughon, R.B.; Bowman, C.N. Nonclassical Dependence of Polymerization Rate on Initiation Rate Observed in Thiol−Ene Photopolymerizations. Macromolecules 2008, 41, 2987–2989. [Google Scholar] [CrossRef]
- Wutticharoenwong, K.; Soucek, M.D. Influence of the Thiol Structure on the Kinetics of Thiol-ene Photopolymerization with Time-Resolved Infrared Spectroscopy. Macromol. Mater. Eng. 2008, 293, 45–56. [Google Scholar] [CrossRef]
- Roper, T.M.; Guymon, C.A.; Jönsson, E.S.; Hoyle, C.E. Influence of the Alkene Structure on the Mechanism and Kinetics of Thiol-Alkene Photopolymerizations with Real-Time Infrared Spectroscopy. J. Polym. Sci. A Polym. Chem. 2004, 42, 6283–6298. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, H.; Hoyle, C.E. The Effect of Thiol and Ene Structures on Thiol–Ene Networks: Photopolymerization, Physical, Mechanical and Optical Properties. Polymer 2009, 50, 2237–2245. [Google Scholar] [CrossRef]
- Jacobine, A.F. Thiol-Ene Photopolymers. In Radiation Curing in Polymer Science and Technology III; Fouassier, J.P., Rabek, J.F., Eds.; Elsevier Applied Science: London, UK, 1993; pp. 219–268. [Google Scholar]
- Morgan, C.R.; Magnotta, F.; Ketley, A.D. Thiol/Ene Photocurable Polymers. J. Polym. Sci. Polym. Chem. Ed. 1977, 15, 627–645. [Google Scholar] [CrossRef]
- Menefee, A.; Alford, D.; Scott, C.B. Hydrogen Bonding of the Thiol Group. J. Chem. Phys. 1956, 25, 370–371. [Google Scholar] [CrossRef]
- Zgrzeba, A.; Andrzejewska, E.; Marcinkowska, A. Ionic Liquid–Containing Ionogels by Thiol–Ene Photopolymerization. Kinetics and Solvent Effect. RSC Adv. 2015, 5, 100354–100361. [Google Scholar] [CrossRef]
- Taft, R.W.; Kamlet, M.J. The Solvatochromic Comparison Method. 2. The .Alpha.-Scale of Solvent Hydrogen-Bond Donor (HBD) Acidities. J. Am. Chem. Soc. 1976, 98, 2886–2894. [Google Scholar] [CrossRef]
- Richez, A.P.; Yow, H.N.; Biggs, S.; Cayre, O.J. Dispersion Polymerization in Non-Polar Solvent: Evolution toward Emerging Applications. Prog. Polym. Sci. 2013, 38, 897–931. [Google Scholar] [CrossRef] [Green Version]
- Bon, S.A.F.; Haddleton, D.M. Experimental Procedures and Techniques for Radical Polymerization. In Handbook of Radical Polymerization; Matyjaszewski, K., Davis, T.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 845–893. [Google Scholar]
- Van Herk, A.M.; Monteiro, M. Heterogeneous Systems. In Handbook of Radical Polymerization; Matyjaszewski, K., Davis, T.P., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002; pp. 301–331. [Google Scholar]
- Alimohammadi, F.; Wang, C.; Durham, O.Z.; Norton, H.R.; Bowman, C.N.; Shipp, D.A. Radical Mediated Thiol-Ene/Yne Dispersion Polymerizations. Polymer 2016, 105, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zeng, Z.; Yang, J.; Chen, Y. Photoinitiated Dispersion Polymerization of Methyl Methacrylate: A Quick Approach to Prepare Polymer Microspheres with Narrow Size Distribution. J. Polym. Sci. A Polym. Chem. 2008, 46, 1329–1338. [Google Scholar] [CrossRef]
- Wang, C.; Podgórski, M.; Bowman, C.N. Monodisperse Functional Microspheres from Step-Growth “Click” Polymerizations: Preparation, Functionalization and Implementation. Mater. Horiz. 2014, 1, 535–539. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Podgórski, M.; Xi, W.; Shah, P.; Stansbury, J.; Bowman, C.N. Monodispersity/Narrow Polydispersity Cross-Linked Microparticles Prepared by Step-Growth Thiol–Michael Addition Dispersion Polymerizations. Macromolecules 2015, 48, 8461–8470. [Google Scholar] [CrossRef]
- Tan, B.; Lee, J.-Y.; Cooper, A.I. Ionic Hydrocarbon Surfactants for Emulsification and Dispersion Polymerization in Supercritical CO2. Macromolecules 2006, 39, 7471–7473. [Google Scholar] [CrossRef]
- Shin, J.; Nazarenko, S.; Hoyle, C.E. Enthalpy Relaxation of Photopolymerized Thiol−Ene Networks: Structural Effects. Macromolecules 2008, 41, 6741–6746. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. The Solvatochromic Comparison Method. I. The Beta.-Scale of Solvent Hydrogen-Bond Acceptor (HBA) Basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Reichardt, C. Polarity of Ionic Liquids Determined Empirically by Means of Solvatochromic Pyridinium N-Phenolate Betaine dyes. Green Chem. 2005, 7, 339–351. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, .Pi.*, .Alpha., and .Beta., and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.; Taft, R.W. The Solvatochromic Comparison Method. 6. The .Pi.* Scale of Solvent Polarities. J. Am. Chem. Soc. 1977, 99, 6027–6038. [Google Scholar] [CrossRef]
TMPTP | PETMP | PETMB | |||||||
---|---|---|---|---|---|---|---|---|---|
Bulk | 70 wt.% of IL | Bulk | 70 wt.% of IL | Bulk | 70 wt.% of IL | ||||
SH | SH | C2–H | SH | SH | C2-H | SH | SH | C2–H | |
GBDA | 0.12 | 7.96 | −2.25 | 0.31 | 8.35 | −2.35 | 0.87 | 9.71 | −2.12 |
TAT | 2.56 | 8.04 | −2.02 | 2.08 | 6.44 | −1.98 | 2.99 | 10.13 | −1.88 |
TATT | 2.83 | 8.57 | −1.72 | 2.87 | 8.36 | −1.79 | 3.53 | 9.64 | −1.41 |
DAP | 3.73 | 8.52 | −1.86 | 3.94 | 8.99 | −1.72 | 4.71 | 10.36 | −1.63 |
Component | α | β | π* |
---|---|---|---|
EMImNTf2 | 0.66 | 0.23 | 0.98 |
TMPTP | 0.56 | 0.33 | 0.87 |
PETMP | 0.49 | 0.32 | 0.93 |
PETMB | 0.58 | 0.40 | 0.79 |
DAP | 0.08 | 0.36 | 0.85 |
TATT | 0.25 | 0.51 | 0.63 |
Flexibility | |||
---|---|---|---|
TMPTP | PETMP | PETMB | |
GBDA | +++ | +++ | ++ |
TAT | +++ | ++ | ++ |
TATT | +++ | + | brittle |
DAP | +++ | +++ | +++ |
TMPTP | PETMP | PETMB | ||||
---|---|---|---|---|---|---|
70 wt.% of IL | ||||||
Rpmax, s−1 | t, s | Rpmax, s−1 | t, s | Rpmax, s−1 | t, s | |
GBDA | 0.041 | 8.5 | 0.037 | 6.9 | 0.029 | 9.2 |
TAT | 0.077 | 4.4 | 0.074 | 4.3 | 0.054 | 6.1 |
TATT | 0.070 | 5.6 | 0.080 | 3.6 | 0.070 | 5.6 |
DAP | 0.023 | 10.3 | 0.026 | 9.1 | 0.016 | 10.2 |
Bulk | ||||||
GBDA | 0.034 | 9.2 | 0.031 | 8.5 | 0.018 | 15.1 |
TAT | 0.063 | 4.7 | 0.062 | 4.5 | 0.048 | 7.1 |
TATT | 0.041 | 5.3 | 0.059 | 4.2 | 0.028 | 7.3 |
DAP | 0.026 | 8.6 | 0.031 | 8.0 | 0.021 | 11.4 |
Tg °C | |||
---|---|---|---|
TMPTP | PETMP | PETMB | |
GBDA | −5.7 | 5.9 | 14.2 |
TAT | 15.3 | 31.7 | 29.6 |
TATT | 22.9 | 36.6 | 34.3 |
DAP | −7.7 | 3.0 | 6.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska, A.; Gajewski, P.; Szcześniak, K.; Marcinkowska, A. The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization. Gels 2021, 7, 214. https://doi.org/10.3390/gels7040214
Lewandowska A, Gajewski P, Szcześniak K, Marcinkowska A. The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization. Gels. 2021; 7(4):214. https://doi.org/10.3390/gels7040214
Chicago/Turabian StyleLewandowska, Aneta, Piotr Gajewski, Katarzyna Szcześniak, and Agnieszka Marcinkowska. 2021. "The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization" Gels 7, no. 4: 214. https://doi.org/10.3390/gels7040214
APA StyleLewandowska, A., Gajewski, P., Szcześniak, K., & Marcinkowska, A. (2021). The Influence of Monomer Structure on the Properties of Ionogels Obtained by Thiol–Ene Photopolymerization. Gels, 7(4), 214. https://doi.org/10.3390/gels7040214