Chia Seeds (Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Physicochemical
2.1.1. pH
2.1.2. Total Soluble Solids (TSS)
2.1.3. Viscosity
2.1.4. Potassium Content
2.1.5. Energy Content
2.2. Sensory Characteristics
2.2.1. Color
2.2.2. Texture
2.2.3. Aroma
2.2.4. Flavor
2.3. The Best Formulation of Sports Energy Gel
3. Conclusions
4. Materials and Methods
4.1. Sports Energy Gel Production
4.2. Physicochemical Characteristics Analysis
4.3. Sensory Characteristics Analysis
4.4. Determination of the Best Treatment
- Panelists who had assessed the sports energy gel characteristics’ quality were asked to rank nine parameters of the sports energy gels: pH, total soluble solids, viscosity, potassium, gross energy, color, aroma, texture, and flavor. The results of the rankings were then summed and calculated on average for each parameter. The first rank parameter was the highest average value;
- The BV (valence weight) was calculated for each parameter. BV is the level of importance for each analyzed parameter. BV values range from 0–1. The BV calculation used the following formula:
- The best and the worst values for each analyzed parameter was determined. The best and the worst values were the averages of each treatment for each parameter. If the best value is the maximum value, then the worst value is the minimum value, and vice versa. After that, the difference between the two values was calculated with the following formula:Δ = The best value − The worst value
- The BN (relative weight) was determined for each analyzed parameter. BN is the relative weight of each parameter analyzed. BN values come from BV, which is calculated using the following formula:
- The NE (effectiveness value) of each analyzed parameter was determined with the following formula:BV = (treatment value − the worst value)/Δ
- The NH (result value), which is the weight of the best treatment comparison against other parameters, was determined, calculated with the following formula:NH = BN × NE
- The following formula was used to calculate the effectiveness index of each treatment:
4.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gujar, M.V.; Gala, M.B. Product development, biochemical and organoleptic analysis of a sports drink. IOSR J. Sports Phys. Educ. 2014, 1, 1–5. [Google Scholar] [CrossRef]
- Nugraha, C.; Rosidi, A.; Noor, Y.; Ulvie, S. The influence of isotonic drinks on the pulse on football athletes in the Persisac football school, Semarang city. J. Gizi Indones. 2016, 5, 31–39. [Google Scholar]
- da Silva Marineli, R.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Coorey, R.; Tjoe, A.; Jayasena, V. Gelling properties of chia seed and flour. J. Food Sci. 2014, 79, E859–E866. [Google Scholar] [CrossRef]
- Atik, D.S.; Demirci, T.; Öztürk, H.İ.; Demirci, S.; Sert, D.; Akın, N. Chia seed mucilage versus guar gum: Effects on microstructural, textural, and antioxidative properties of set-type yoghurts. Braz. Arch Biol. Technol. 2020, 63, 1–12. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds-Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Safari, A.; Kusnandara, F.; Syamsir, E. Biji Chia: Chia seeds: Characteristics of gum and its health potential. J. Pangan 2016, 25, 137–146. [Google Scholar]
- Lestari, Y.N.; Farida, E.; Fauzi, N.; Fikri, F.F. Analysis of physicochemical and sensory quality of chia seeds sport energy gel (Salvia hispanica L.) during storage. In Proceedings of the 5th International Seminar of Public Health and Education (ISPHE 2020), Semarang, Indonesia, 22 July 2020; Handayani, O.W.K., Sumartiningsih, S., Putriningtyas, N.D., Eds.; EAI: Slovakia, Indonesia, 2020. [Google Scholar]
- Shirreffs, S.M. Hydration in sport and exercise: Water, sports drinks and other drinks. Nutr. Bull. 2009, 34, 374–379. [Google Scholar] [CrossRef]
- Joel, J.M.; Barminas, J.T.; Riki, E.Y.; Yelwa, J.M.; Edeh, F. Extraction and characterization of hydrocolloid pectin from goron tula (Azanza garckeana) fruit. World Sci. News 2018, 101, 157–171. [Google Scholar]
- Milani, J.; Maleki, G. Hydrocolloids in food industry. In Food Industrial Processes-Methods and Equipment; Valdez, B., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Han, J.-A.; Seo, T.-R.; Lim, S.-T.; Park, D.J. Utilization of rice starch with gums in Asian starch noodle preparation as substitute for sweet potato starch. Food Sci. Biotechnol. 2011, 20, 1173–1178. [Google Scholar] [CrossRef]
- Márquez Cardozo, C.J.; Jiménez Castañeda, C.A.; Salazar Ripoll, C.S. Development of mango (Mangifera indica L.) energy drinks. Rev. Fac. Nac. Agron. 2017, 70, 8115–8121. [Google Scholar] [CrossRef]
- Mikuš, Ľ.; Valík, Ľ.; Dodok, L. Usage of hydrocolloids in cereal technology. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Boča, S.; Galoburda, R.; Skrupskis, I.; Skrupska, D. The effect of freezing and hydrocolloids on the physical parameters of strawberry mass-based desserts. Proc. Latv. Univ. Agric. 2014, 31, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.; Saraswat, S. Product development, nutrient and sensory analysis of sports drink based on chia seeds (Salvia hispanica L.). Int. J. Physiol. 2019, 4, 187–190. [Google Scholar]
- Sahni, P.; Bobade, H.; Sharma, S.; Singh, B. Effect of different types and concentrations of hydrocolloids on pasting, hydration and surface-active properties of pigeon pea flour. Carpathian J. Food Sci. Technol. 2020, 12, 202–211. [Google Scholar]
- Javanmard, M.; Chin, N.L.; Mirhosseini, S.H.; Endan, J. Characteristics of gelling agent substituted fruit jam: Studies on the textural, optical, physicochemical and sensory properties. Int. J. Food Sci. Technol. 2012, 47, 1808–1818. [Google Scholar] [CrossRef]
- Aribah, S.A.; Sanjaya, A.P.; Muhammad, D.R.A.; Praseptiangga, D. Sensorial and physical properties of chocolate beverage prepared using low fat cocoa powder. In Proceedings of the 2nd International Conference and Exhibition on Powder Technology (ICePTi), Solo, Indonesia, 20–21 August 2019; Joni, I.M., Panatarani, C., Praseptiangga, D., Eds.; AIP Conference Proceedings: New York, NY, USA, 2020; Volume 2219, p. 070007. [Google Scholar]
- Ezera, E.J.; Nwufo, B.T.; Wapwera, J.A. Effects of graded quantities of xanthan gum on the physicochemical and flocculation properties of gum Arabic. Int. J. Chem. Sci. 2019, 3, 44–49. [Google Scholar]
- Prabawa, I.D.G.P.; Salim, R.; Khairiah, N.; Ihsan, H.; Lestari, R.Y. Review xanthan gum: Production from biomass substrates, effective variable, characteristics and regulations, applications and market potential. J. Ris. Ind. Has. Hutan 2020, 11, 97–112. [Google Scholar] [CrossRef]
- Chowdhary, N.; Bandral, J.D.; Sood, M.; Gupta, N.; Dutta, U.; Shams, R. Effect of Xanthan gum and drying temperature on quality characteristics of garlic powder. Pharma Innov. J. 2021, 10, 411–418. [Google Scholar]
- Orgulloso-Bautista, S.; Ortega-Toro, R.; García Zapateiro, L.A. Design and application of hydrocolloids from butternut squash (Cucurbita moschata) epidermis as a food additive in mayonnaise-type sauces. ACS Omega 2021, 6, 5499–5508. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Alghooneh, A. Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum-cress seed gum blend. Int. J. Biol. Macromol. 2020, 151, 1139–1153. [Google Scholar] [CrossRef]
- Savitri, L. Effect of addition of agar on the physicochemical and sensory characteristics of pumpkin leather. Edufortech 2019, 4, 106–117. [Google Scholar]
- Kamaluddin, M.J.; Handayani, M. Pengaruh perbedaan jenis hidrokoloid terhadap karakteristikfruit leather pepaya. Edufortech 2018, 3, 24–32. [Google Scholar] [CrossRef]
- Prasetyo, B.B.; Purwadi, P.; Rosyidi, D. Addition of cmc (carboxy methyl cellulose) to the manufacture of red guava juice honey drink (Psidium guajava) reviewed from ph, viscosity, total yeast and organoleptic quality. J. Ilmu. Teknol. Peternak. 2014, 19, 60–69. [Google Scholar]
- Ashraf, A.; Ayoub, A.; Dixit, A. Effect of hydrocolloid carboxymethyl cellulose (cmc) on clarification of bottle gourd juice and its physicochemical properties. Eur. J. Nutr. Food Saf. 2020, 14, 67–75. [Google Scholar] [CrossRef]
- Meng, L.; Kim, S.M. Effects of different hydrocolloids on physicochemical properties of high-moisture fermented rice cake during storage. Cereal Chem. 2020, 97, 1183–1192. [Google Scholar] [CrossRef]
- Li, J.M.; Nie, S.P. The functional and nutritional aspects of hydrocolloids in foods. Food Hydrocoll. 2016, 53, 46–61. [Google Scholar] [CrossRef]
- Octaviani, P.A.; Pramono, Y.B.; Pratama, Y. Physical and sensory characteristics of rice milk malt brown rice with the addition of stabilist materials of different types. J. Teknol. Pangan 2020, 4, 17–22. [Google Scholar]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilani, S.L.; Najafpour, G.D.; Heydarzadeh, H.D.; Zare, H. Kinetički modeli za produkciju ksantana Pomoću Xanthomonas campestris iz Melase. Chem. Ind. Chem. Eng. Q. 2011, 17, 179–187. [Google Scholar] [CrossRef]
- Widyawati, A.; Chodijah, S.; Husaini, A.; Zaman, M.; Hastuti, B.; Afifah, S.N.; Mulyani, B.; Susilowati, E. Adsorption of methylene blue dyes using pectin membrane extraction of pectin from banana peels (Musa paradiasica fomatypica) for biodegradable plastic films. J. Phys.: Conf. Ser. 2019, 1503, 12031. [Google Scholar]
- Goff, H.D.; Guo, Q. The Role of Hydrocolloids in the Development of Food Structure. In Handbook of Food Structure Development; The Royal Society of Chemistry: London, UK, 2019. [Google Scholar]
- Aggarwal, P.; Kumar, V.; Yaqoob, M.; Kaur, S.; Babbar, N. Effect of different levels of hydrocolloids on viscosity and cloud stability of kinnow juice and beverages. J. Food Process. Preserv. 2020, 44, 1–21. [Google Scholar] [CrossRef]
- Nuvoli, L.; Conte, P.; Garroni, S.; Farina, V.; Piga, A.; Fadda, C. Study of the effects induced by ball milling treatment on different types of hydrocolloids in a corn starch-rice flour system. Foods 2020, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Abedi, F.; Sani, A.M.; Karazhiyan, H. Effect of some hydrocolloids blend on viscosity and sensory properties of raspberry juice-milk. J Food Sci. Technol. 2014, 51, 2246–2250. [Google Scholar] [CrossRef] [Green Version]
- Rhein-Knudsen, N.; Ale, M.T.; Rasmussen, S.; Kamp, S.K.; Bentil, J.A.; Meyer, A.S. Alkaline extraction of seaweed carrageenan hydrocolloids using cocoa pod husk ash. Biomass Convers. Biorefinery 2018, 8, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Nurbaya, S.R.; Nurmalasari, I.R.; Amalia, A.R. The effect of addition of polysaccharide on characteristics of low sugar cucumber sorbet. J. Pangan Agroind. 2019, 9, 117–121. [Google Scholar] [CrossRef]
- Budianta, T.D.W.; Naryanto, P.S.; Wijaya, R. Pinneaple puree: Effect xanthan gum om physicochemical and sensory properties. J. Teknol. Pangan Gizi 2007, 6, 26–40. [Google Scholar]
- Patil, S.H.; Shere, P.D.; Saware, A.R.; Mete, B.S. Effect of hydrocolloids on textural and sensory quality of date-mango leather. J. Pharmacogn. Phytochem. 2017, 6, 399–402. [Google Scholar]
- Rochmah, M.M.; Ferdyansyah, M.K.; Nurdyansyah, F. The effect of hydrocolloids addition and sucrose concentration on physical and organoleptic characteristics of papaya sheet jam (Carica papaya L.). J. Pangan Agroind. 2019, 7, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Ponglabba, D.V.; Sarungallo, Z.L.; Santoso, B. Physical and organoleptic properties of red fruit (Pandanus conoideus Lamk) puree. Warta IHP 2020, 37, 58–65. [Google Scholar]
- Food and Agriculture Organization. Guidelines for Use of Nutrition and Health Claims. Available online: http://www.fao.org/ag/humannutrition/32444-09f5545b8abe9a0c3baf01a4502ac36e4.pdf (accessed on 15 July 2021).
- Codex Alimentarius Commission. Agenda Item 11 CX/NFSDU 01/11 Joint FAO/WHO Food Standards Programme Codex Committee on Nutrition and Foods for Special Dietary Uses Twenty-Third Session. Available online: http://www.fao.org/tempref/codex/Meetings/CCNFSDU/ccnfsdu23/nf01_11e.pdf (accessed on 30 August 2021).
- Ogori, A.F.; Amove, J.; Evi-Parker, P.; Sardo, G.; Okpala, C.O.R.; Bono, G.; Korzeniowska, M. Functional and sensory properties of jam with different proportions of pineapple, cucumber, and Jatropha leaf. Food Raw Mater. 2021, 9, 192–200. [Google Scholar] [CrossRef]
- Kurnia, A.R.; Prameswari, G.N.; Susilo, M.T.; Melinda, A.; Nasiha, N.H. Comparing macronutrient compositions and sensory characteristics of jackfruit nugget formulations and commercially available chicken nugget. In Advances in Social Science, Education and Humanities Research, Proceedings of the 5th International Conference on Physical Education, Sport, and Health, Semarang, Indonesia, 10–12 September 2019; Fauzi, L., Wicaksono, A., Anggita, G.M., Eds.; Atlantis Press: Paris, France, 2019. [Google Scholar]
- Febrianto, N.A.; Sa’diyah, K.; Tejasari, T. Red kidney bean powder substituted milk in cinnamon herbal coffee: Consumer perception, sensory properties and nutrition content. Coffee Cocoa Res. J. 2016, 32, 109–119. [Google Scholar] [CrossRef]
Treatment 1 | Physicochemical Characteristics | ||||
---|---|---|---|---|---|
Viscosity (cP) | pH | Total Solids (%) | Potassium (mg/100 mL) | Energy (Kcal/100 mL) | |
SEG1 * | 367.4 ± 9.81 a | 5.2 ± 0.38 a | 10.6 ± 0.08 b | 19.6 ± 0.23 c | 60.24 ± 0.340 a |
SEG2 * | 405.4 ± 2.89 b | 5.5 ± 0.13 b | 9.4 ± 0.01 a | 16.9 ± 1.01 a | 58.01 ± 0.317 b |
SEG3 * | 423.9 ± 3.46 b | 5.9 ± 0.32 b,c | 9.7 ± 0.01 a | 17.9 ± 0.09 b | 41.83 ± 1.467 c |
Treatment 2 | Sensory Characteristics | |||
---|---|---|---|---|
Color * | Texture * | Aroma | Flavor | |
SEG1 | 3.6 ± 0.49 b,c | 3.2 ± 0.87 a,b | 2.9 ± 1.02 | 2.6 ± 0.82 |
SEG2 | 3.08 ± 0.86 a | 2.8 ± 0.78 a | 2.8 ± 0.74 | 2.8 ± 0.89 |
SEG3 | 3.7 ± 0.46 c | 3.9 ± 0.78 b,c | 2.7 ± 0.69 | 2.9 ± 0.64 |
Variables | BV | BN | SEG1 | SEG2 | SEG3 | |||
---|---|---|---|---|---|---|---|---|
NE | NH | NE | NH | NE | NH | |||
Energy | 0.48259 | 0.080 | 1.000 | 0.080 | 0.879 | 0.070 | 0.000 | 0.000 |
Viscosity | 0.68657 | 0.114 | 1.000 | 0.114 | 0.188 | 0.021 | 0.000 | 0.000 |
pH | 0.51741 | 0.086 | 1.000 | 0.086 | 0.609 | 0.052 | 0.000 | 0.000 |
Total Soluble Solids | 0.46766 | 0.077 | 1.000 | 0.077 | 0.000 | 0.000 | 0.004 | 0.000 |
Potassium | 0.83085 | 0.137 | 1.000 | 0.137 | 0.000 | 0.000 | 0.392 | 0.054 |
Aroma | 0.47264 | 0.078 | 1.000 | 0.078 | 0.143 | 0.011 | 0.000 | 0.000 |
Flavor | 0.78607 | 0.130 | 0.000 | 0.000 | 0.375 | 0.049 | 1.000 | 0.130 |
Texture | 1 | 0.165 | 0.393 | 0.065 | 0.000 | 0.000 | 1.000 | 0.165 |
Color | 0.801 | 0.133 | 0.875 | 0.116 | 0.000 | 0.000 | 1.000 | 0.133 |
Total | 6.0 | 1.000 | 0.753 3 | 0.204 | 0.482 |
Ingredients (% w/w) | Treatments 4 | ||
---|---|---|---|
SEG1 | SEG2 | SEG3 | |
Chia seeds | 2 | 2 | 2 |
Maltodextrin | 7.5 | 7.5 | 7.5 |
Dragon fruit juice | 2.5 | 2.5 | 2.5 |
Cucumber juice | 2.5 | 2.5 | 2.5 |
Xanthan gum | 0.1 | - | - |
Pectin | - | 0.1 | - |
CMC | - | - | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lestari, Y.N.; Farida, E.; Amin, N.; Afridah, W.; Fitriyah, F.K.; Sunanto, S. Chia Seeds (Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel? Gels 2021, 7, 267. https://doi.org/10.3390/gels7040267
Lestari YN, Farida E, Amin N, Afridah W, Fitriyah FK, Sunanto S. Chia Seeds (Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel? Gels. 2021; 7(4):267. https://doi.org/10.3390/gels7040267
Chicago/Turabian StyleLestari, Yanesti Nuravianda, Eko Farida, Nur Amin, Wiwik Afridah, Fifi Khoirul Fitriyah, and Sunanto Sunanto. 2021. "Chia Seeds (Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel?" Gels 7, no. 4: 267. https://doi.org/10.3390/gels7040267
APA StyleLestari, Y. N., Farida, E., Amin, N., Afridah, W., Fitriyah, F. K., & Sunanto, S. (2021). Chia Seeds (Salvia hispanica L.): Can They Be Used as Ingredients in Making Sports Energy Gel? Gels, 7(4), 267. https://doi.org/10.3390/gels7040267