Evaluation of the Adsorption and Desorption Dynamics of Beet Juice Red Dye on Alginate Microbeads
Abstract
:1. Introduction
2. Results and Discussion
2.1. Viscosity of the Alginate Solutions
2.2. Diameter, Microstructure and Color of the Microcapsules
2.3. Adsorption Dynamics and Modeling
2.4. Desorption Dynamics and Modeling
3. Conclusions
4. Materials and Methods
4.1. Materials
4.1.1. Food Dye
4.1.2. Chemicals
4.2. Methods
4.2.1. Preparation of the Dye Solution
4.2.2. Preparation of the Alginate Solutions and Microbeads
4.2.3. Viscosity of the Alginate Solutions
4.2.4. Characterization of the Microbeads
Diameter
Micrographs
Color Measurement
4.2.5. Spectrophotometric Determination of Dye Concentration in the Supernatant
4.2.6. Adsorption Experiments
4.2.7. Desorption Experiments
4.2.8. Statistical Analysis and Modelling
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chan, E.S.; Lee, B.B.; Ravindra, P.; Poncelet, D. Prediction models for shape and size of ca-alginate macrobeads produced through extrusion–dripping method. J. Colloid Interface Sci. 2009, 338, 63–72. [Google Scholar] [CrossRef]
- Gouin, S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci. Technol. 2004, 15, 330–347. [Google Scholar] [CrossRef]
- Corrêa-Filho, L.C.; Moldão-Martins, M.; Alves, V.D. Advances in the application of microcapsules as carriers of functional compounds for food products. Appl. Sci. 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.; Cotas, J. Introductory chapter: Alginates—A general overview. In Alginates-Recent Uses of this Natural Polymer; Perreira, L., Ed.; Intechopen: London, UK, 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, X.; Zhang, D.; Xiu, Z. Theoretical and experimental investigations on the size of alginate microspheres prepared by dropping and spraying. J. Microencapsul. 2007, 24, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.T.D.; Fries, L.L.M.; Menezes, C.R.D.; Holkem, A.T.; Schwan, C.L.; Wigmann, É.F.; Bastos, J.D.O.; Silva, C.D.B.D. Microencapsulation: Concepts, mechanisms, methods and some applications in food technology. Ciênc. Rural 2014, 44, 1304–1311. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit. Contam. 2006, 23, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Fernández-López, J.A.; Roca, M.J.; Angosto, J.M.; Obón, J.M. Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods Hum. Nutr. 2018, 73, 146–153. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). Scientific opinion on the re-evaluation of beetroot red (E 162) as a food additive. EFSA J. 2015, 13, 4318. [Google Scholar]
- Antigo, J.L.D.; Bergamasco, R.D.C.; Madrona, G.S. Effect of pH on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Sci. Technol. 2017, 38, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, A.; Fathima, N.; Rao, J.; Nair, B. Utilization of calcium alginate beads as adsorbent for removal of dyes from tannery wastewaters. J. Am. Leather Chem. Assoc. 2006, 101, 223–230. [Google Scholar]
- Mahmoodi, N.M. Equilibrium, kinetics, and thermodynamics of dye removal using alginate in binary systems. J. Chem. Eng. Data 2011, 56, 2802–2811. [Google Scholar] [CrossRef]
- Saha, A.; Tripathy, V.; Basak, B.; Kumar, J. Entrapment of distilled palmarosa (cymbopogon martinii) wastes in alginate beads for adsorptive removal of methylene blue from aqueous solution. Environ. Prog. Sust. Energ. 2018, 37, 1942–1953. [Google Scholar] [CrossRef]
- Rezaei, A.; Nasirpour, A. Evaluation of release kinetics and mechanisms of curcumin and curcumin-β-cyclodextrin inclusion complex incorporated in electrospun almond gum/pva nanofibers in simulated saliva and simulated gastrointestinal conditions. Bio Nano Sci. 2019, 9, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Belščak-Cvitanović, A.; Komes, D.; Karlović, S.; Djakovic, S.; Špoljarić, I.; Mršić, G.; Ježek, D. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem. 2015, 167, 378–386. [Google Scholar] [CrossRef]
- Davarci, F.; Turan, D.; Ozcelik, B.; Poncelet, D. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocoll. 2017, 62, 119–127. [Google Scholar] [CrossRef]
- Belščak-Cvitanović, A.; Đorđević, V.; Karlović, S.; Pavlović, V.; Komes, D.; Ježek, D.; Bugarski, B.; Nedović, V. Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll. 2015, 51, 361–374. [Google Scholar] [CrossRef]
- Lelas, V. Prehrambeno-Tehnološko Inženjerstvo 1; Golden marketing—Tehnička knjiga: Zagreb, Croatia, 2006; pp. 120–122. (In Croatian) [Google Scholar]
- Bušić, A.; Belščak-Cvitanović, A.; Vojvodić Cebin, A.; Karlović, S.; Kovač, V.; Špoljarić, I.; Mršić, G.; Komes, D. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Res. Int. 2018, 111, 244–255. [Google Scholar] [CrossRef]
- Sriamornsak, P.; Kennedy, R.A. Effect of a small molecule on diffusion and swelling properties of selected polysaccharide gel beads. Carbohydr. Polym. 2010, 79, 219–223. [Google Scholar] [CrossRef]
- Pradeep Sekhar, C.; Khalidhasan, S.; Rajesh, V.; Rajesh, N. Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere 2009, 77, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Asadi, S.; Eris, S.; Azizian, S. Alginate-based hydrogel beads as a biocompatible and efficient adsorbent for dye removal from aqueous solutions. ACS Omega 2018, 3, 15140–15148. [Google Scholar] [CrossRef]
- Xu, Z.; Singh, R.K.; Bao, J.; Wang, C. Direct effect of solvent viscosity on the physical mass transfer for wavy film flow in a packed column. Ind. Eng. Chem. Res. 2019, 58, 17524–17539. [Google Scholar] [CrossRef] [Green Version]
- Vargas, A.M.M.; Cazetta, A.L.; Martins, A.C.; Moraes, J.C.G.; Garcia, E.E.; Gauze, G.F.; Costa, W.F.; Almeida, V.C. Kinetic and equilibrium studies: Adsorption of food dyes acid Yellow 6, Acid Yellow 23, and Acid Red 18 on activated carbon from flamboyant pods. Chem. Eng. J. 2012, 181–182, 243–250. [Google Scholar] [CrossRef]
- Sharma, G.; Naushad, M.; Kumar, A.; Rana, S.; Sharma, S.; Bhatnagar, A.; Stadler, F.J.; Ghfar, A.A.; Khan, M.R. Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Saf. Environ. Prot. 2017, 109, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, M.A.; Etcheverry, M.; Zanini, G.P. Evaluation of the adsorption kinetics of brilliant green dye onto a monmorillonite/alginate composite beads by the shrinking core model. Adsorption 2019, 25, 1387–1396. [Google Scholar] [CrossRef]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresur. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Badot, P.-M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33, 399–447. [Google Scholar] [CrossRef]
- Sardar, M.; Manna, M.; Maharana, M.; Sen, S. Remediation of dyes from industrial wastewater using low-cost adsorbents. In Green Adsorbents to Remove Metals, Dyes and Boron from Polluted Water; Inamuddin, M., Lichtfouse, E., Asiri, A., Eds.; Environmental Chemistry for a Sustainable World; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Benković, M.; Sarić, I.; Jurinjak Tušek, A.; Jurina, T.; Gajdoš Kljusurić, J.; Valinger, D. Analysis of the adsorption and release processes of bioactives from lamiaceae plant extracts on alginate microbeads. Food Bioproc. Technol. 2021, 14, 1216–1230. [Google Scholar] [CrossRef]
Alginate Concentration [%] | L* | a* | b* | Chroma | Hue | ΔE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before * | After * | Before * | After * | Before * | After * | Before * | After * | Before * | After * | ||
1 | 57.26 ± 0.78 a | 32.95 ± 0.87 A | 3.07 ± 0.11 a | 38.65 ± 1.29 A | 4.70 ± 0.16 a | −2.53 ± 0.07 A | 5.61 ± 0.19 a | 38.73 ± 1.29 A | 57.08 ± 0.54 a | 356.29 ± 0.05 A | 43.69 ± 1.19 a |
2 | 57.62 ± 1.34 a | 30.07 ± 0.16 B | 2.80 ± 0.07 b | 26.55 ± 0.06 B | 4.61 ± 0.06 a | −7.02 ± 0.24 B | 5.40 ± 0.09 a | 27.47 ± 0.11 B | 58.72 ± 0.26 b | 345.19 ± 0.46 B | 38.19 ± 1.20 b |
3 | 55.83 ± 0.87 b | 38.11 ± 1.82 C | 3.17 ± 0.11 c | 27.27 ± 1.20 B | 4.36 ± 0.11 b | −11.16 ± 0.36 C | 5.39 ± 0.09 a | 29.47 ± 1.25 C | 53.99 ± 1.35 c | 337.73 ± 0.24 C | 33.71 ± 1.47 c |
4 | 54.61 ± 1.75 b | 36.63 ± 0.23 C | 3.02 ± 0.41 a | 25.44 ± 0.14 C | 3.79 ± 0.24 c | −10.28 ± 0.03 D | 4.85 ± 0.43 b | 27.44 ± 0.13 B | 51.58 ± 2.25 d | 338.00 ± 0.15 C | 32.00 ± 1.56 c |
Alginate Concentration [%] | L* | a* | b* | Chroma | Hue | ΔE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Before * | After * | Before * | After * | Before * | After * | Before * | After * | Before * | After * | ||
1 | 30.75 ± 0.59 a | 49.10 ± 1.48 A | 31.52 ± 1.53 a | 11.61 ± 0.38 A | −9.41 ± 2.09 a | −0.14 ± 0.12 a | 32.88 ± 0.82 a | 11.61 ± 0.37 A | 343.85 ± 5.00 a | 359.30 ± 0.60 A | 28.62 ± 2.46 a |
2 | 31.23 ± 0.41 a | 40.43 ± 1.18 B | 29.63 ± 0.56 b | 13.27 ± 0.09 B | −9.69 ± 0.23 a | −4.17 ± 0.29 b | 31.16 ± 0.53 b | 13.90 ± 0.06 B | 341.88 ± 0.59 a | 342.57 ± 1.24 B | 19.56 ± 0.91 b |
3 | 32.02 ± 1.64 a | 44.16 ± 0.39 C | 25.32 ± 0.72 c | 12.46 ± 0.16 C | −11.57 ± 0.37 b | −3.83 ± 0.15 c | 27.72 ± 0.52 c | 13.04 ± 0.11 C | 335.32 ± 0.88 b | 342.90 ± 0.85 B | 19.30 ± 1.39 b |
4 | 34.36 ± 0.10 b | 48.55 ± 0.44 A | 26.14 ± 0.06 d | 10.59 ± 0.23 D | −11.79 ± 0.14 b | −3.73 ± 0.22 c | 28.68 ± 0.10 d | 11.23 ± 0.17 A | 335.74 ± 0.22 b | 340.59 ± 1.34 C | 22.54 ± 0.39 c |
Model/Parameter | 1% | 2% | 3% | 4% |
---|---|---|---|---|
Pseudo first-order | ||||
qe (mL juice/g beads) | 0.3847 * (0.0093) | 0.1229 * (0.0040) | 0.0991 * (0.0046) | 0.0759 * (0.0019) |
k1 (min−1) | 0.5962 * (0.0825) | 0.8056 * (0.1930) | 1.0702 (0.5008) | 1.1264 * (0.2973) |
h0 (mL juice/g min) | 0.2293 * | 0.0990 * | 0.1060 | 0.0855 * |
R2 | 0.9911 | 0.9814 | 0.9604 | 0.9885 |
Pseudo second-order | ||||
qe (mL juice/g beads) | 0.4164 * (0.4164) | 0.1321 * (0.0040) | 0.1064 * (0.0062) | 0.0777 * (0.0029) |
k2 (g beads/mL juice min) | 2.4856 * (0.6008) | 10.7692 * (3.1204) | 16.2162 (10.3003) | 53.0777 (42.5794) |
h0 (mL juice/g min) | 0.4310 * | 0.1879 * | 0.1836 | 0.3204 |
R2 | 0.9928 | 0.9926 | 0.9722 | 0.9869 |
Elovich | ||||
β (g beads/mL juice) | 22.7399 * (5.0187) | 81.3751 * (9.4447) | 103.9401 * (34.9979) | 115.5526 * (39.8251) |
α (mL juice/g min) | 19.8904 (31.8755) | 13.6063 (23.6063) | 28.9798 (28.9798) | 4.6740 (11.6083) |
R2 | 0.9886 | 0.9976 | 0.9821 | 0.9869 |
Webber–Morris | ||||
Kdiff (mL juice/g beads min0.5) | 0.0634 * (0.0189) | 0.0204 * (0.0061) | 0.0168 * (0.0051) | 0.0109 (0.0046) |
C (mL juice/ g beads) | 0.1430 (0.0597) | 0.0481 * (0.0192) | 0.0392 (0.0162) | 0.0355 * (0.0145) |
R2 | 0.8079 | 0.8077 | 0.8006 | 0.6974 |
Model/Parameter | 1% | 2% | 3% | 4% |
---|---|---|---|---|
First-order | ||||
q0 (mL juice/g beads) | 5.0240 * (0.5113) | 3.4217 * (0.3173) | 2.7526 * (0.2396) | 1.6915 * (0.1335) |
k (min−1) | 0.1145 * (0.0276) | 0.1399 * (0.0283) | 0.0997 * (0.0217) | 0.0633 * (0.0145) |
R2 | 0.9319 | 0.9239 | 0.9328 | 0.9317 |
Korsmeyer–Peppas | ||||
k (min−1) | 2.0420 * (0.2944) | 0.9548 * (0.1786) | 0.8130 * (0.1346) | 0.6286 * (0.0636) |
n | 0.2709 * (0.0431) | 0.2915 * (0.0534) | 0.3053 * (0.0469) | 0.2834 * (0.0290) |
R2 | 0.9256 | 0.9022 | 0.9261 | 0.9643 |
Higuchi | ||||
k (min−1) | 0.9063 * (0.0792) | 0.4458 * (0.0372) | 0.3990 * (0.0296) | 0.2858 * (0.0192) |
R2 | 0.7523 | 0.7900 | 0.8337 | 0.8328 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birkić, A.; Valinger, D.; Jurinjak Tušek, A.; Jurina, T.; Gajdoš Kljusurić, J.; Benković, M. Evaluation of the Adsorption and Desorption Dynamics of Beet Juice Red Dye on Alginate Microbeads. Gels 2022, 8, 13. https://doi.org/10.3390/gels8010013
Birkić A, Valinger D, Jurinjak Tušek A, Jurina T, Gajdoš Kljusurić J, Benković M. Evaluation of the Adsorption and Desorption Dynamics of Beet Juice Red Dye on Alginate Microbeads. Gels. 2022; 8(1):13. https://doi.org/10.3390/gels8010013
Chicago/Turabian StyleBirkić, Anamaria, Davor Valinger, Ana Jurinjak Tušek, Tamara Jurina, Jasenka Gajdoš Kljusurić, and Maja Benković. 2022. "Evaluation of the Adsorption and Desorption Dynamics of Beet Juice Red Dye on Alginate Microbeads" Gels 8, no. 1: 13. https://doi.org/10.3390/gels8010013
APA StyleBirkić, A., Valinger, D., Jurinjak Tušek, A., Jurina, T., Gajdoš Kljusurić, J., & Benković, M. (2022). Evaluation of the Adsorption and Desorption Dynamics of Beet Juice Red Dye on Alginate Microbeads. Gels, 8(1), 13. https://doi.org/10.3390/gels8010013