Novel Metoprolol-Loaded Chitosan-Coated Deformable Liposomes in Thermosensitive In Situ Gels for the Management of Glaucoma: A Repurposing Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size Distribution and Zeta Potential Measurements
2.2. Encapsulation Efficiency (EE)
2.3. Morphology of MT-LPs and MT-CLPs
2.4. Physical Stability Study
2.5. In Vitro MT Release Study
2.6. Mucoadhesive Study or Bioadhesion
2.7. Characterization of the Thermosensitive ISG
2.7.1. Determination of the Sol–Gel Transition Temperature
2.7.2. Viscosity Measurement
2.7.3. Ex Vivo Transcorneal Permeation Study
2.7.4. Pharmacodynamic Study
2.7.5. Eye Irritation Study
3. Conclusions
4. Materials
5. Experimental
5.1. Preparation of MT-LPs and MT-CLPs
5.2. Characterization of MT-LPs and MT-CLPs
5.2.1. Particle Size Distribution and Zeta Potential Measurements
5.2.2. Determination of Encapsulation Efficiency
5.2.3. Morphology of MT-LPs and MT-CLPs
5.2.4. Physical Storage Stability
5.2.5. In Vitro Release Study
5.2.6. Mucoadhesion Study
5.3. Preparation of MT-LPs and MT-CLPs-0.5 Loaded In Situ Gel
5.3.1. Characterization of the Thermosensitive ISGs
5.3.2. Determination of the Sol–Gel Transition Temperature
5.3.3. Viscosity Measurement
5.3.4. Ex Vivo Transcorneal Permeation Study
5.3.5. Pharmacodynamic Study
5.3.6. Eye Irritation Study
5.3.7. Statistical Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Feky, Y.A.; Fares, A.R.; Zayed, G.; El-Telbany, R.F.; Ahmed, K.A.; El-Telbany, D.F. Repurposing of nifedipine loaded in situ ophthalmic gel as a novel approach for glaucoma treatment. Biomed. Pharmacother. 2021, 142, 112008. [Google Scholar] [CrossRef]
- Nielsen, N.V.; Eriksen, J.S. Timolol and metoprolol in glaucoma. A comparison of the ocular hypotensive effect, local and systemic tolerance. Acta Ophthalmol. 1981, 59, 336–346. [Google Scholar] [CrossRef]
- Klein, S.; Dressman, J.B. Comparison of drug release from metoprolol modified release dosage forms in single buffer versus a pH-gradient dissolution test. Dissolution Technol. 2006, 13, 6–12. [Google Scholar] [CrossRef]
- Üstündağ-Okur, N.; Gökçe, E.H.; Bozbıyık, D.İ.; Eğrilmez, S.; Özer, Ö.; Ertan, G. Preparation and in vitro-in vivo evaluation of ofloxacin loaded ophthalmic nano structured lipid carriers modified with chitosan oligosaccharide lactate for the treatment of bacterial keratitis. Eur. J. Pharm. Sci. 2014, 15, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Kalam, M.A. Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. Int. J. Biol. Macromol. 2016, 89, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Dong, P.; Huang, D.; Mei, L.; Xia, Y.; Wang, Z.; Pan, X.; Li, G.; Wu, C. Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery. J. Pharm. Biopharm. 2015, 91, 82–90. [Google Scholar] [CrossRef]
- Hu, X.; Gong, X. A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J. Colloid Interface Sci. 2016, 470, 62–70. [Google Scholar] [CrossRef]
- Ebrahim, S.; Peyman, G.A.; Lee, P.J. Applications of liposomes in ophthalmology. Surv. Ophthalmol. 2005, 50, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Abdelbary, G. Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm. Dev. Technol. 2011, 16, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.R.; Wang, T.C.; Gan, C. The stabilization and antioxidant performances of coenzyme Q10-loaded niosomes coated by PEG and chitosan. J. Mol. Liq. 2021, 325, 115194. [Google Scholar] [CrossRef]
- Cortesi, R.; Argnani, R.; Esposito, E.; Dalpiaz, A.; Scatturin, A.; Lufino, F.; Guerrini, M.R.; Cavicchioni, G.; Incorvaia, C.; Menegatti, E.; et al. Cationic liposomes as potential carriers for ocular administration of peptides with anti-herpetic activity. Int. J. Pharm. 2006, 317, 90–100. [Google Scholar] [CrossRef]
- Ameeduzzafar, N.; Khan, N.K.; Alruwaili, S.N.; Bukhari, B.; Alsuwayt, M.; Afzal, S.; Akhter, M.; Yasir, M.; Elmowafy, K.; Shalaby, A. Improvement of Ocular Efficacy of Levofloxacin by Bioadhesive Chitosan Coated PLGA Nanoparticles: Box-behnken Design, In-vitro Characterization, Antibacterial Evaluation and Scintigraphy Study. Iran J. Pharm. Res. 2020, 19, 292–311. [Google Scholar]
- Tan, G.; Yu, S.; Pan, H. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int. J. Biol. Macromol. 2017, 94, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, O.; Ferreira-Nunes, C.R.; Cunha-Filho, M.; Gratieri, T.; Gelfuso, G.M. In situ gelling microemulsion for topical ocular delivery of moxifloxacin and betamethasone. J. Mol. Liq. 2022, 360, 119559. [Google Scholar] [CrossRef]
- Almeida, H.; Amaral, P.; Lobão, M.H.; Lobo, J.M. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov. Today. 2013, 19, 400–412. [Google Scholar] [CrossRef]
- Deshmukh, P.K.; Gattani, S.G. In vitro and in vivo consideration of novel environmentally responsive ophthalmic drug delivery system. Pharm. Dev. Technol. 2013, 18, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Alshraim, M.O.; Sangi, S.; Harisa, G.I.; Alomrani, A.H.; Yusuf, O.; Badran, M.M. Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition. Molecules 2019, 24, 250. [Google Scholar] [CrossRef] [Green Version]
- Badran, M.M.; Alomrani, A.; Harisa, G.I.; Ashour, A.E.; Kumar, A.; Yassin, A.E. Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability. Biomed. Pharmacother. 2018, 106, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Abou el Ela, A.E.; El Khatib, M.M. Formulation and evaluation of new long acting metoprolol tartrate ophthalmic gels. Saudi Pharm. J. 2014, 22, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.; Gao, D.; Liu, Y.; Li, N.; Zhang, X.; Zheng, R.Y.; Wang, Q.; Luo, L.; Dai, K. Preparation and study on anti-tumor effect of chitosan-coated oleanolic acid liposomes. RSC Adv. 2015, 5, 18725–18732. [Google Scholar] [CrossRef]
- Mohsen, A.M. Cationic Polymeric Nanoparticles for Improved Ocular Delivery and Antimycotic Activity of Terconazole. J. Pharm. Sci. 2022, 111, 458–468. [Google Scholar] [CrossRef] [PubMed]
- García, M.C.; Aldana, A.A.; Tártara, L.I.; Alovero, F.; Strumia, M.C.; Manzo, R.H. Bioadhesive and biocompatible films as wound dressing materials based on a novel dendronized chitosan loaded with ciprofloxacin. Carbohydr. Polym. 2017, 175, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, S.; Allegrini, P.R.; Becquet, M.M.; McSheehy, P.M.J. Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics. Neoplasia 2009, 11, 874–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddique, S.; Khanam, J.; Bigoniya, P. Development of Sustained Release Capsules Containing “Coated Matrix Granules of Metoprolol Tartrate. AAPS Pharm. Sci. Tech. 2010, 11, 1306–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plummer, C.E.; MacKay, E.O.; Gelatt, K.N. Comparison of the effects of topical administration of a fixed combination of dorzolamide-timolol to monotherapy with timolol or dorzolamide on IOP, pupil size, and heart rate in glaucomatous dogs. Vet. Ophthalmol. 2006, 9, 245–249. [Google Scholar] [CrossRef]
- Kassem, M.A.; Attia, M.A.; Habib, F.S.; Mohamed, A.R. In Vivo performance of ophthalmic preparations of betamethasone and phenylephrine hydrochloride in the rabbit eye: Effect of polyvinyl alcohol. Pharm. Res. 1986, 3, 244–248. [Google Scholar] [CrossRef]
- Fouda, N.H.; Abdelrehim, R.T.; Hegazy, D.A. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: In-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2018, 25, 1340–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeyens, V.; Felt-Baeyens, O.; Rougier, S.; Pheulpin, S.; Boisrame, B. Clinical evaluation of bioadhesive ophthalmic drug inserts (BODI®) for the treatment of external ocular infections in dogs. J. Control. Rel. 2002, 85, 163–168. [Google Scholar] [CrossRef]
- Wilhelmus, K.R. The Draize eye test. Surv. Ophthalmol. 2001, 46, 493–515. [Google Scholar] [CrossRef]
- Imam, S.S.; Alshehri, S.; Altamimi, M.A.; Hussain, A.; Qamar, W.; Gilani, S.J.; Zafar, A.N.; Alruwaili, K.S.; Alanazi, S.; Almutairy, B.K. Formulation of Piperine-Chitosan-Coated Liposomes: Characterization and In Vitro Cytotoxic Evaluation. Molecules 2021, 26, 3281. [Google Scholar] [CrossRef]
- de la Fuente, M.; Paolicelli, M.P.; Sanchez, A.; Seijo, B.; Alonso, M.J. Chitosan-based nanostructures: A delivery platform for ocular therapeutics. Adv. Drug Deliv. Rev. 2010, 62, 100–117. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.D.; Sun, R.S.; Ni, L.; Xia, Q. Development and characterisation of a novel chitosan-coated antioxidant liposome containing both coenzyme Q10 and α-lipoic acid. J. Microencapsul. 2015, 32, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Hasanovic, A. Improvement in physicochemical parameters of dppc liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers. Euro. J. Pharm. Biopharm. 2010, 75, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Alomrani, A.H.; Shazly, G.A.; Amara, A.A.; Badran, M.M. Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: In vitro skin penetration studies and antifungal efficacy using Candida albicans as model. Colloids Surf. B Biointerfaces 2014, 1, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Pan, H.; Li, P.; Wang, H.; Wang, X.; Pan, W.; Yuan, Y. The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system. Colloids Surf. B Biointerfaces 2016, 143, 455–462. [Google Scholar]
- Marzio, L.D.; Esposito, S.; Rinaldi, F.; Marianecci, C.; Carafa, M. Polysorbate 20 vesicles as oral delivery system: In vitro characterization. Colloids Surf. B Biointerfaces 2013, 104, 200–206. [Google Scholar] [CrossRef]
- Khattab, A.; Marzok, S.; Ibrahim, M. Development of optimized mucoadhesive thermosensitive pluronic based in situ gel for controlled delivery of Latanoprost: Antiglaucoma efficacy and stability approaches. J. Drug Deliv. Sci. Technol. 2019, 53, 101134. [Google Scholar] [CrossRef]
- Hussein, M.E.; Ibrahim, A.N.; Alsantali, I.; Alsalahat, R.; Amira, I. Novel Chitosan-Coated Niosomal Formulation for Improved Management of Bacterial Conjunctivitis: A Highly Permeable and Efficient Ocular Nanocarrier for Azithromycin. J. Pharm. Sci. 2021, 110, 3027–3036. [Google Scholar]
- Alomrani, A.; Badran, M.; Harisa, G.I.; ALshehry, M.; Alhariri, M.; Alshamsan, A.; Alkholief, M. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J. 2019, 27, 603–611. [Google Scholar] [CrossRef]
- Andersen, T.; Mishchenko, E.; Flaten, G.E.; Sollid, S.; Mattsson, I.; Tho, N. Chitosan-Based Nanomedicine to Fight Genital Candida Infections: Chitosomes. Mar. Drugs 2017, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.X.; Huang, L.; Liu, L.; Abdalla, A.M.; Gauthier, M. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. 2014, 2, 7149–7159. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.A.; Faisal, W.; O’Shea, J.P.; Murphy, C.; Ahern, R.J.; Ryan, K.B.; Griffin, B.T.; Crean, A.M. In vitro dissolution models for the prediction of in vivo performance of an oral mesoporous silica formulation. J. Control. Release 2017, 250, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Makhlof, A.; Werle, A.; Tozuka, Y.H.; Takeuchi, A. A mucoadhesive nanoparticulate system for the simultaneous delivery of macromolecules and permeation enhancers to the intestinal mucosa. J. Control. Release 2011, 149, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.A.; Ullah, K.; Shah, A.; Jones, D.S.; Singh, T.R. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Disc. Today 2019, 24, 1575–1586. [Google Scholar] [CrossRef]
- Permana, A.D.; Utami, R.N.; Layadi, P.; Himawan, A.; Juniarti, N.; Anjani, Q.K.; Utomo, E. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int. J. Pharm. 2021, 1, 120623. [Google Scholar] [CrossRef]
- Basaran, B.; Bozkir, A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: Hydroxypropyl-beta-cyclodextrin complex. Acta Pol. Pharm. Drug Res. 2012, 69, 1137–1147. [Google Scholar]
- Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290–297. [Google Scholar] [CrossRef]
- Wen, Y.; Ban, J.; Mo, Z.; Zhang, Y.; An, P.; Liu, L.; Xie, Q.; Du, Y.; Xie, B.; Zhan, X. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. Nanotechnology 2018, 29, 425101. [Google Scholar] [CrossRef]
- Das, S.; Suresh, P.k. Drug delivery to eye: Special reference to nanoparticles. Int. J. Drug Deliv. 2010, 2, 12–21. [Google Scholar] [CrossRef]
Formulations | Particle Size (nm) | PDI | Zeta Potential (mV) | EE% |
---|---|---|---|---|
MT-CLs | 115.2 ± 3.26 | 0.201 ± 0.001 | −8.2 ± 0.31 | 13.45 ± 2.51 |
MT-LPs | 93.3 ± 1.63 | 0.243 ± 0.005 | −10.6 ± 0.52 | 26.59 ± 4.88 |
MT-CLPs-0.25 | 112.2 ± 2.81 | 0.286 ± 0.032 | 17.5 ± 0.49 | 27.08 ± 5.19 |
MT-CLPs-0.50 | 171.1 ± 2.01 | 0.297 ± 0.004 | 25.3 ± 0.97 | 27.76 ± 3.04 |
MT-CLPs-1.0 | 265.4 ± 4.32 | 0.312 ± 0.022 | 33.9 ± 2.86 | 22.05 ± 2.44 |
Correlation Coefficient (R2) | |||||
---|---|---|---|---|---|
Formulations | Zero-Order | First-Order | Higuchi’s Model | Korsmeyer–Peppas Model | |
R2 | n | ||||
MT-LPs | 0.842 ± 0.086 | 0.916 ± 0.113 | 0.932 ± 0.038 | 0.969 ± 0.014 | 0.201 ± 0.024 |
MT-CLPs-0.25 | 0.895 ± 0.076 | 0.983 ± 0.055 | 0.975 ± 0.033 | 0.987 ± 0.016 | 0.362 ± 0.064 |
MT-CLPs-0.50 | 0.799 ± 0.047 | 0.908 ± 0.059 | 0.925 ± 0.028 | 0.963 ± 0.009 | 0.318 ± 0.032 |
PD Parameters | MT-ISG | MT-ISG1 | MT-ISG2 |
---|---|---|---|
(% Dec IOP)max (%) | 54.7 ± 3.15 | 62.3 ± 6.28 | 73.6 ± 5.13 |
tmax (h) | 4 | 4 | 3 |
AUC(0–6) (%.h) | 199.2 ± 11.73 | 256.5 ± 19.26 | 279.1 ± 27.83 |
MRT (h) | 2.3 ± 0.91 | 5.7 ± 0.82 | 6.2 ± 1.19 |
Formulations | 1 h | 3 h | 6 h | 24 h |
---|---|---|---|---|
MT-ISG | 0 | 0 | 0 | 0 |
MT-ISG1 | 0 | 0 | 0 | 0 |
MT-ISG2 | (Conjunctival redness) | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badran, M.M.; Alomrani, A.H.; Almomen, A.; Bin Jardan, Y.A.; Abou El Ela, A.E.S. Novel Metoprolol-Loaded Chitosan-Coated Deformable Liposomes in Thermosensitive In Situ Gels for the Management of Glaucoma: A Repurposing Approach. Gels 2022, 8, 635. https://doi.org/10.3390/gels8100635
Badran MM, Alomrani AH, Almomen A, Bin Jardan YA, Abou El Ela AES. Novel Metoprolol-Loaded Chitosan-Coated Deformable Liposomes in Thermosensitive In Situ Gels for the Management of Glaucoma: A Repurposing Approach. Gels. 2022; 8(10):635. https://doi.org/10.3390/gels8100635
Chicago/Turabian StyleBadran, Mohamed M., Abdullah H. Alomrani, Aliyah Almomen, Yousef A. Bin Jardan, and Amal El Sayeh Abou El Ela. 2022. "Novel Metoprolol-Loaded Chitosan-Coated Deformable Liposomes in Thermosensitive In Situ Gels for the Management of Glaucoma: A Repurposing Approach" Gels 8, no. 10: 635. https://doi.org/10.3390/gels8100635
APA StyleBadran, M. M., Alomrani, A. H., Almomen, A., Bin Jardan, Y. A., & Abou El Ela, A. E. S. (2022). Novel Metoprolol-Loaded Chitosan-Coated Deformable Liposomes in Thermosensitive In Situ Gels for the Management of Glaucoma: A Repurposing Approach. Gels, 8(10), 635. https://doi.org/10.3390/gels8100635