Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior
Abstract
:1. Introduction
2. Results and Discussion
2.1. Basic Physicochemical Characterization
2.2. Mechanical Properties
2.3. Thermal Insulation Properties
2.4. Thermal Stability and Combustion Behavior
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Preparation of AP Reinforced Clay Aerogel Composites
4.3. Characterization
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Liu, H.; Li, H.; Cao, Y.; Hua, X.; Ge, S.; He, Y.; Jiang, C.; He, D. Cogel Strategy for the Preparation of a “Thorn”-Like Porous Halloysite/Gelatin Composite Aerogel with Excellent Mechanical Properties and Thermal Insulation. ACS Appl. Mater. Interfaces 2022, 14, 17763–17773. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-W.; Tian, M.-Z.; Huang, P. Starch/Clay Aerogel Reinforced by Cellulose Nanofibrils for Thermal Insulation. Cellulose 2021, 28, 3505–3513. [Google Scholar] [CrossRef]
- Li, X.-L.; Chen, M.-J.; Chen, H.-B. Facile Fabrication of Mechanically-Strong and Flame Retardant Alginate/Clay Aerogels. Compos. Part B Eng. 2019, 164, 18–25. [Google Scholar] [CrossRef]
- Chen, H.-B.; Schiraldi, D.A. Flammability of Polymer/Clay Aerogel Composites: An Overview. Polym. Rev. 2019, 59, 1–24. [Google Scholar] [CrossRef]
- Madyan, O.A.; Fan, M. Organic Functionalization of Clay Aerogel and Its Composites through In-Situ Crosslinking. Appl. Clay Sci. 2019, 168, 374–381. [Google Scholar] [CrossRef]
- Wang, H.; Cao, M.; Zhao, H.-B.; Liu, J.-X.; Geng, C.-Z.; Wang, Y.-Z. Double-Cross-Linked Aerogels towards Ultrahigh Mechanical Properties and Thermal Insulation at Extreme Environment. Chem. Eng. J. 2020, 399, 125698. [Google Scholar] [CrossRef]
- Gawryla, M.D.; Nezamzadeh, M.; Schiraldi, D.A. Foam-like Materials Produced from Abundant Natural Resources. Green Chem. 2008, 10, 1078–1081. [Google Scholar] [CrossRef]
- Chen, H.-B.; Wang, Y.-Z.; Schiraldi, D.A. Preparation and Flammability of Poly(Vinyl Alcohol) Composite Aerogels. ACS Appl. Mater. Interfaces 2014, 6, 6790–6796. [Google Scholar] [CrossRef]
- Wu, W.; Wang, K.; Zhan, M.-S. Preparation and Performance of Polyimide-Reinforced Clay Aerogel Composites. Ind. Eng. Chem. Res. 2012, 51, 12821–12826. [Google Scholar] [CrossRef]
- Pojanavaraphan, T.; Schiraldi, D.A.; Magaraphan, R. Mechanical, Rheological, and Swelling Behavior of Natural Rubber/Montmorillonite Aerogels Prepared by Freeze-Drying. Appl. Clay Sci. 2010, 50, 271–279. [Google Scholar] [CrossRef]
- Chen, H.-B.; Chiou, B.-S.; Wang, Y.-Z.; Schiraldi, D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5, 1715–1721. [Google Scholar] [CrossRef]
- Pojanavaraphan, T.; Magaraphan, R.; Chiou, B.-S.; Schiraldi, D.A. Development of Biodegradable Foamlike Materials Based on Casein and Sodium Montmorillonite Clay. Biomacromolecules 2010, 11, 2640–2646. [Google Scholar] [CrossRef]
- Shang, K.; Liao, W.; Wang, J.; Wang, Y.-T.; Wang, Y.-Z.; Schiraldi, D.A. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Appl. Mater. Interfaces 2016, 8, 643–650. [Google Scholar] [CrossRef]
- Wang, X.; Deng, X.; Wu, L.; Deng, Y.; Liu, Q.; Li, M.; Li, Z. Facile Preparation of Mechanically Strong Polyvinyl Alcohol/MTMS Aerogel Composites with Improved Thermal Stability. J. Nanopart. Res. 2021, 23, 261. [Google Scholar] [CrossRef]
- Fang, Q.; Shan, X.; Liu, L.; Hu, X.; Wang, J. Design and Synthesis of Phase-Change-Material Aerogels for Personal Thermal Management. Acta Polym. Sin. 2022, 53, 165–173. [Google Scholar] [CrossRef]
- Madyan, O.A.; Fan, M.; Feo, L.; Hui, D. Physical Properties of Clay Aerogel Composites: An Overview. Compos. Part B Eng. 2016, 102, 29–37. [Google Scholar] [CrossRef]
- Finlay, K.; Gawryla, M.D.; Schiraldi, D.A. Biologically Based Fiber-Reinforced/Clay Aerogel Composites. Ind. Eng. Chem. Res. 2008, 47, 615–619. [Google Scholar] [CrossRef]
- Finlay, K.A.; Gawryla, M.D.; Schiraldi, D.A. Effects of Fiber Reinforcement on Clay Aerogel Composites. Materials 2015, 8, 5440–5451. [Google Scholar] [CrossRef] [Green Version]
- Gawryla, M.D.; van den Berg, O.; Weder, C.; Schiraldi, D.A. Clay Aerogel/Cellulose Whisker Nanocomposites: A Nanoscale Wattle and Daub. J. Mater. Chem. 2009, 19, 2118–2124. [Google Scholar] [CrossRef]
- Shang, K.; Ye, D.-D.; Kang, A.-H.; Wang, Y.-T.; Liao, W.; Xu, S.; Wang, Y.-Z. Robust and Fire Retardant Borate-Crosslinked Poly (Vinyl Alcohol)/Montmorillonite Aerogel via Melt-Crosslink. Polymer 2017, 131, 111–119. [Google Scholar] [CrossRef]
- Stanly, S.; John, H. Uncarbonized Crosslinked PVA-Modified MMT/Reduced Graphene Hybrid Aerogel for Efficient Carbon Dioxide Adsorption at Low Pressure. J. Polym. Res. 2021, 28, 280. [Google Scholar] [CrossRef]
- Li, Z.; Gong, L.; Li, C.; Pan, Y.; Huang, Y.; Cheng, X. Silica Aerogel/Aramid Pulp Composites with Improved Mechanical and Thermal Properties. J. Non-Cryst. Solids 2016, 454, 1–7. [Google Scholar] [CrossRef]
- Li, J.; Lu, Z.; Xie, F.; Huang, J.; Ning, D.; Zhang, M. Highly Compressible, Heat-Insulating and Self-Extinguishing Cellulose Nanofiber/Aramid Nanofiber Nanocomposite Foams. Carbohydr. Polym. 2021, 261, 117837. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, Y.; Teng, C. Facial Fabrication of Aramid Composite Insulating Paper with High Strength and Good Thermal Conductivity. Compos. Commun. 2020, 21, 100370. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; He, S.; Shi, X.; Gong, L.; Zhang, H. Aramid Fibers Reinforced Silica Aerogel Composites with Low Thermal Conductivity and Improved Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 84, 316–325. [Google Scholar] [CrossRef]
- Ghica, M.E.; Almeida, C.M.R.; Fonseca, M.; Portugal, A.; Durães, L. Optimization of Polyamide Pulp-Reinforced Silica Aerogel Composites for Thermal Protection Systems. Polymers 2020, 12, 1278. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, F.; Ji, Y.; Yuan, B.; Hu, X. Effect of Aramid Pulp on Low Temperature Flexural Properties of Carbon Fibre Reinforced Plastics. Compos. Sci. Technol. 2020, 192, 108095. [Google Scholar] [CrossRef]
- Wang, S.; Meng, W.; Lv, H.; Wang, Z.; Pu, J. Thermal Insulating, Light-Weight and Conductive Cellulose/Aramid Nanofibers Composite Aerogel for Pressure Sensing. Carbohydr. Polym. 2021, 270, 118414. [Google Scholar] [CrossRef]
- Lertwassana, W.; Parnklang, T.; Mora, P.; Jubsilp, C.; Rimdusit, S. High Performance Aramid Pulp/Carbon Fiber-Reinforced Polybenzoxazine Composites as Friction Materials. Compos. Part B Eng. 2019, 177, 107280. [Google Scholar] [CrossRef]
- Wenbin, L.; Jianfeng, H.; Jie, F.; Zhenhai, L.; Liyun, C.; Chunyan, Y. Effect of Aramid Pulp on Improving Mechanical and Wet Tribological Properties of Carbon Fabric/Phenolic Composites. Tribol. Int. 2016, 104, 237–246. [Google Scholar] [CrossRef]
- van Olphen, H. Polyelectrolyte Reinforced Aerogels of Clays—Application as Chromatographic Adsorbents. Clays Clay Miner. 1967, 15, 423–435. [Google Scholar] [CrossRef]
- Ohta, S.; Nakazawa, H. Porous Clay-Organic Composites: Potential Substitutes for Polystyrene Foam. Appl. Clay Sci. 1995, 9, 425–431. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, F.; Xiong, R.; Peng, T.; Ma, Y.; Hu, J.; Xie, L.; Jiang, C. Thermal Insulation and Flame Retardancy of Attapulgite Reinforced Gelatin-Based Composite Aerogel with Enhanced Strength Properties. Compos. Part A Appl. Sci. Manuf. 2020, 138, 106040. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.; Koebel, M.M.; Malfait, W.J. Silica Aerogels with Tailored Chemical Functionality. Mater. Des. 2020, 193, 108833. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Niu, G.; Wang, J.; Zhu, D. Poly(Vinylalcohol)/Chitosan-Based High-Strength, Fire-Retardant and Smoke-Suppressant Composite Aerogels Incorporating Aluminum Species via Freeze Drying. Compos. Part B Eng. 2021, 219, 108919. [Google Scholar] [CrossRef]
- Guo, W.; Liu, J.; Zhang, P.; Song, L.; Wang, X.; Hu, Y. Multi-Functional Hydroxyapatite/Polyvinyl Alcohol Composite Aerogels with Self-Cleaning, Superior Fire Resistance and Low Thermal Conductivity. Compos. Sci. Technol. 2018, 158, 128–136. [Google Scholar] [CrossRef]
- Lu, Z.; Jia, F.; Zhuo, L.; Ning, D.; Gao, K.; Xie, F. Micro-Porous MXene/Aramid Nanofibers Hybrid Aerogel with Reversible Compression and Efficient EMI Shielding Performance. Compos. Part B Eng. 2021, 217, 108853. [Google Scholar] [CrossRef]
- Ezquerro, C.S.; Ric, G.I.; Miñana, C.C.; Bermejo, J.S. Characterization of Montmorillonites Modified with Organic Divalent Phosphonium Cations. Appl. Clay Sci. 2015, 111, 1–9. [Google Scholar] [CrossRef]
- Madyan, O.A.; Fan, M.; Huang, Z. Functional Clay Aerogel Composites through Hydrophobic Modification and Architecture of Layered Clays. Appl. Clay Sci. 2017, 141, 64–71. [Google Scholar] [CrossRef]
- Podsiadlo, P.; Kaushik, A.K.; Arruda, E.M.; Waas, A.M.; Shim, B.S.; Xu, J.; Nandivada, H.; Pumplin, B.G.; Lahann, J.; Ramamoorthy, A.; et al. Ultrastrong and Stiff Layered Polymer Nanocomposites. Science 2007, 318, 80–83. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, J.; Peng, T.; Liu, H.; Ge, S.; Xie, H.; Xie, L.; Jiang, C. Preparation of Functionalized Halloysite Reinforced Polyimide Composite Aerogels with Excellent Thermal Insulation Properties. Appl. Clay Sci. 2021, 211, 106200. [Google Scholar] [CrossRef]
- Guo, W.; Wang, X.; Zhang, P.; Liu, J.; Song, L.; Hu, Y. Nano-Fibrillated Cellulose-Hydroxyapatite Based Composite Foams with Excellent Fire Resistance. Carbohydr. Polym. 2018, 195, 71–78. [Google Scholar] [CrossRef]
- Wang, D.; Feng, X.; Zhang, L.; Li, M.; Liu, M.; Tian, A.; Fu, S. Cyclotriphosphazene-Bridged Periodic Mesoporous Organosil-ica-Integrated Cellulose Nanofiber Anisotropic Foam with Highly Flame-Retardant and Thermally Insulating Properties. Chem. Eng. J. 2019, 375, 121933. [Google Scholar] [CrossRef]
- Wicklein, B.; Kocjan, A.; Salazar-Alvarez, G.; Carosio, F.; Camino, G.; Antonietti, M.; Bergström, L. Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide. Nat. Nanotech. 2015, 10, 277–283. [Google Scholar] [CrossRef]
- Ye, D.-D.; Wang, T.; Liao, W.; Wang, H.; Zhao, H.-B.; Wang, Y.-T.; Xu, S.; Wang, Y.-Z. Ultrahigh-Temperature Insulating and Fire-Resistant Aerogels from Cationic Amylopectin and Clay via a Facile Route. ACS Sustain. Chem. Eng. 2019, 7, 11582–11592. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, H.; Xu, T.; Wang, J.; Zhu, Y.; Ding, S.; Hu, T.; Yun, S.; Chen, J. Excellent Flame Retardant and Thermal Insulated Palygorskite/Wood Fiber Composite Aerogels with Improved Mechanical Properties. Appl. Clay Sci. 2020, 184, 105402. [Google Scholar] [CrossRef]
- Jin, H.; Zhou, X.; Xu, T.; Dai, C.; Gu, Y.; Yun, S.; Hu, T.; Guan, G.; Chen, J. Ultralight and Hydrophobic Palygorskite-Based Aerogels with Prominent Thermal Insulation and Flame Retardancy. ACS Appl. Mater. Interfaces 2020, 12, 11815–11824. [Google Scholar] [CrossRef]
- Madyan, O.A.; Fan, M. Hydrophobic Clay Aerogel Composites through the Implantation of Environmentally Friendly Wa-ter-Repellent Agents. Macromolecules 2018, 51, 10113–10120. [Google Scholar] [CrossRef]
- Shen, P.; Zhao, H.-B.; Huang, W.; Chen, H.-B. Poly(Vinyl Alcohol)/Clay Aerogel Composites with Enhanced Flame Retardancy. RSC Adv. 2016, 6, 109809–109814. [Google Scholar] [CrossRef]
- Lee, O.-J.; Lee, K.-H.; Jin Yim, T.; Young Kim, S.; Yoo, K.-P. Determination of Mesopore Size of Aerogels from Thermal Con-ductivity Measurements. J. Non-Cryst. Solids 2002, 298, 287–292. [Google Scholar] [CrossRef]
- Du, A.; Wang, H.; Zhou, B.; Zhang, C.; Wu, X.; Ge, Y.; Niu, T.; Ji, X.; Zhang, T.; Zhang, Z.; et al. Multifunctional Silica Nanotube Aerogels Inspired by Polar Bear Hair for Light Management and Thermal Insulation. Chem. Mater. 2018, 30, 6849–6857. [Google Scholar] [CrossRef]
- Lu, X.; Arduini-Schuster, M.C.; Kuhn, J.; Nilsson, O.; Fricke, J.; Pekala, R.W. Thermal Conductivity of Monolithic Organic Aerogels. Science 1992, 255, 971–972. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.-L.; Yang, N.; Apostolopoulou-Kalkavoura, V.; Qin, B.; Ma, Z.-Y.; Xing, W.-Y.; Qiao, C.; Bergström, L.; Antonietti, M.; Yu, S.-H. Fire-Retardant and Thermally Insulating Phenolic-Silica Aerogels. Angew. Chem. Int. Ed. 2018, 57, 4538–4542. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-J.; Duan, Y.-Y.; Wang, X.-D.; Wang, B.-X. Effects of Solid–Gas Coupling and Pore and Particle Microstructures on the Effective Gaseous Thermal Conductivity in Aerogels. J. Nanopart. Res. 2012, 14, 1024. [Google Scholar] [CrossRef]
- Lu, G.; Wang, X.-D.; Duan, Y.-Y.; Li, X.-W. Effects of Non-Ideal Structures and High Temperatures on the Insulation Properties of Aerogel-Based Composite Materials. J. Non-Cryst. Solids 2011, 357, 3822–3829. [Google Scholar] [CrossRef]
- Kang, A.H.; Shang, K.; Ye, D.D.; Wang, Y.T.; Wang, H.; Zhu, Z.M.; Liao, W.; Xu, S.M.; Wang, Y.Z.; Schiraldi, D.A. Rejuvenated Fly Ash in Poly(Vinyl Alcohol)-Based Composite Aerogels with High Fire Safety and Smoke Suppression. Chem. Eng. J. 2017, 327, 992–999. [Google Scholar] [CrossRef]
- Hn, A.; Sn, B.; Xin, W.A.; Lei, S.A.; Yuan, H.A. Zeolitic Imidazolate Framework-8/Polyvinyl Alcohol Hybrid Aerogels with Excellent Flame Retardancy. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105720. [Google Scholar] [CrossRef]
- Skauge, A.; Fuller, N.; Hepler, L.G. Specific Heats of Clay Minerals: Sodium and Calcium Kaolinites, Sodium and Calcium Montmorillonites, Illite, and Attapulgite. Thermochim. Acta 1983, 61, 139–145. [Google Scholar] [CrossRef]
- He, Z.; Xia, Z.; Hu, J.; Ma, L.; Li, Y. Thermodynamic Properties of Polyvinyl Alcohol Binder of Electrically Controlled Solid Propellant. J. Polym. Res. 2019, 26, 219. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Z.; An, B.; Ma, C.; Xu, L.; Zhang, Z.; Luo, S.; Li, W.; Liu, S. Thermal-Insulating, Flame-Retardant and Mechanically Resistant Aerogel Based on Bio-Inspired Tubular Cellulose. Compos. Part B Eng. 2021, 220, 108997. [Google Scholar] [CrossRef]
Samples | Tmax (°C) | dW/dT (%/°C) | Residue (%) | ||
---|---|---|---|---|---|
Stage II | Stage III | Stage II | Stage III | ||
PVA aerogel | 329 | 476 | 0.58 | 0.62 | 4 |
PVA-MMT-AP0 | 272 | 435 | 0.40 | 0.16 | 47 |
PVA-MMT-AP1.0 | 292 | 500 | 0.23 | 0.26 | 43 |
Samples | TTI (s) | PHRR (kW/m2) | TTPHRR (s) | THR (MJ/m2) | FIGRA (kW/m2/s) | TSR (m2/m2) | Residue (%) |
---|---|---|---|---|---|---|---|
PVA aerogel | ~2 | 562.8 | 72.1 | 46.2 | 7.8 | 746.5 | 0 |
PVA-MMT-AP0 | ~2 | 150.5 | 27.1 | 9.8 | 5.6 | 93.4 | 42.5 |
PVA-MMT-AP1.0 | ~2 | 130.6 | 28.0 | 12.0 | 4.7 | 96.5 | 39.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, Y.; Sun, M.; Wang, G.; Liu, Q.; Li, M.; Shulga, Y.M.; Li, Z. Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior. Gels 2022, 8, 654. https://doi.org/10.3390/gels8100654
Wang X, Wang Y, Sun M, Wang G, Liu Q, Li M, Shulga YM, Li Z. Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior. Gels. 2022; 8(10):654. https://doi.org/10.3390/gels8100654
Chicago/Turabian StyleWang, Xiaowu, Yang Wang, Mengtian Sun, Guichao Wang, Qiong Liu, Ming Li, Yury M. Shulga, and Zhi Li. 2022. "Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior" Gels 8, no. 10: 654. https://doi.org/10.3390/gels8100654
APA StyleWang, X., Wang, Y., Sun, M., Wang, G., Liu, Q., Li, M., Shulga, Y. M., & Li, Z. (2022). Aramid Pulp Reinforced Clay Aerogel Composites: Mechanical, Thermal and Combustion Behavior. Gels, 8(10), 654. https://doi.org/10.3390/gels8100654