Effects of Salinity on Abiotic Aggregation of Organic Matter and Subsequent Microbial Responses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.1.1. In situ Conditions at AP and TR
2.1.2. Changes in Bulk OM Concentrations in AP Samples
2.1.3. Changes in Bulk OM Concentrations in TR Samples
2.1.4. Changes in Bulk Amino Acids in AP Samples
2.1.5. Changes in Bulk Amino Acids in TR Samples
2.1.6. Changes in Bulk Neutral Aldose AP Samples
2.1.7. Changes in Bulk Neutral Aldoses in TR Samples
2.1.8. Compound-Specific Amino Acid Concentrations
2.1.9. Compound-Specific Neutral Aldose Concentrations in AP Samples
2.1.10. Compound-Specific Neutral Aldose Concentrations in TR Samples
2.1.11. Bacterial Abundance
2.2. Discussion
2.2.1. Aggregation of Bulk Organic Matter
2.2.2. Changes in Biologically Labile Organic Components
2.2.3. Changes in Uncharacterized Organic Components
2.2.4. Microbial Responses
3. Conclusions
4. Material and Methods
4.1. Study Sites and Field Sampling
4.2. Experimental Design
4.3. Chemical and Biological Determinations
4.3.1. Determination of POC and Particulate Organic Nitrogen (PON) Concentrations
4.3.2. Determination of DOC and Total Dissolved Nitrogen (TDN)
4.3.3. Determination of Amino Acids
4.3.4. Determination of Neutral Aldoses
4.3.5. Determination of Inorganic Nutrients
4.3.6. Determination of Bacterial Abundance
4.4. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigg, A.; Santschi, P.H.; Burd, A.; Chin, W.C.; Kamalanathan, M.; Xu, C.; Ziervogel, K. From nano-gels to marine snow: A synthesis of gel formation processes and modeling efforts involved with particle flux in the ocean. Gels 2021, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Santschi, P.H.; Chin, W.C.; Quigg, A.; Xu, C.; Kamalanathan, M.; Lin, P.; Shiu, R.F. Marine gel interactions with hydrophilic and hydrophobic pollutants. Gels 2021, 7, 83. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, Ö.; Gschwend, P.M. Aquatic colloids: Concepts, definitions, and current challenges. Limnol. Oceanogr. 1997, 42, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Kepkay, P.E. Colloids and the ocean carbon cycle. In Marine Chemistry; Wangersky, P.J., Ed.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 35–56. [Google Scholar]
- Guo, L.D.; Santschi, P.H. Composition and cycling of colloids in marine environments. Rev. Geophys. 1997, 35, 17–40. [Google Scholar] [CrossRef]
- Benner, R.; Pakulski, J.D.; McCarthy, M.; Hedges, J.I.; Hatcher, P.J. Bulk chemical characteristics of dissolved organic matter in the ocean. Science 1992, 255, 1561–1564. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M.; Hedges, J.; Benner, R. Major biochemical composition of dissolved high molecular weight organic matter in seawater. Mar. Chem. 1996, 55, 281–297. [Google Scholar] [CrossRef]
- Shiu, R.F.; Chiu, M.H.; Vazquez, C.I.; Tsai, Y.Y.; Le, A.; Kagiri, A.; Xu, C.; Kamalanathan, M.; Bacosa, H.P.; Doyle, S.M.; et al. Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Mar. Chem. 2020, 223, 103789. [Google Scholar] [CrossRef]
- Simon, M.; Grossart, H.P.; Schweitzer, B.; Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 2002, 28, 175–211. [Google Scholar] [CrossRef] [Green Version]
- Grossart, H.-P.; Berman, T.; Simon, M.; Pohlmann, K. Occurrence and microbial dynamics of macroscopic organic aggregates (lake snow) in Lake Kinneret, Israel, in fall. Aquat. Microb. Ecol. 1998, 14, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Wolanski, E.; Gibbs, R. Flocculation of suspended sediment in the Fly River estuary, Papua New Guinea. J. Coast. Res. 1995, 11, 754–762. [Google Scholar]
- Mosley, L.; Liss, P.S. Particle aggregation, pH changes and metal behaviour during estuarine mixing: Review and integration. Mar. Freshw. Res. 2020, 71, 300–310. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1996; p. 1022. [Google Scholar]
- Fox, L.E. The removal of dissolved humic acid during esturine mixing. Estua. Coast. Shelf Sci. 1983, 16, 431–440. [Google Scholar] [CrossRef]
- Mari, X.; Torréton, J.-P.; Trinh, C.B.-T.; Bouvier, T.; Thuoc, C.V.; Lefebvre, J.-P.; Ouillon, S. Aggregation dynamics along a salinity gradient in the Bach Dang estuary, North Vietnam. Estua. Coast. Shelf Sci. 2012, 96, 151–158. [Google Scholar] [CrossRef]
- Sholkovitz, E.R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 1976, 40, 831–845. [Google Scholar] [CrossRef]
- Gibbs, R.J.; Konwar, L.; Terchunian, A. Size of flocs suspended in Delaware Bay. Can. J. Fish. Aquat. Sci. 1983, 40, 102–104. [Google Scholar] [CrossRef]
- Alldredge, A.L. The carbon, nitrogen, and mass content of marine snow as a function of aggregate size. Deep-Sea Res. 1998, 45, 529–541. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Silver, M.W. Characteristics, dynamics and significance of marine snow. Prog. Oceanogr. 1988, 20, 41–82. [Google Scholar] [CrossRef]
- Jackson, G.A.; Lochmann, S. Modeling coagulation of algae in marine ecosystem. In Environmental Particles; Buffle, J., van Leeuwen, H.P., Eds.; Lewis Publisher: Boca Raton, FL, USA, 1993; Volume 2, pp. 387–414. [Google Scholar]
- Kiørboe, T.; Andersen, K.P.; Dam, H.G. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 1990, 107, 235–245. [Google Scholar] [CrossRef]
- Engel, A.; Thoms, S.; Riebesell, U.; Rochelle-Newall, E.; Zondervan, I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 2004, 428, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Unanue, M.A.; Azua, I.; Arrieta, J.M.; Herndl, G.J.; Iriberri, J. Laboratory-made particles as a useful approach to analyse microbial processes in marine aggregates. FEMS Microbiol. Ecol. 1998, 26, 325–334. [Google Scholar] [CrossRef]
- Mopper, K.; Zhou, J.; Sri Ramana, K.; Passow, U.; Dam, H.G.; Drapeau, D.T. The role of surface-active carbohydrates in the flocculation of a diatom bloom in a mesocosm. Deep-Sea Res. II 1995, 42, 47–73. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Skoog, A. Aggregation of organic matter in coastal waters: A dilemma of using a Couette flocculator. Cont. Shelf Res. 2017, 139, 62–70. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Skoog, A. Abiotic aggregation of organic matter in coastal and estuarine waters: Cases in the eastern Long Island Sound, USA. Water 2021, 13, 3077. [Google Scholar] [CrossRef]
- Lancelot, C.; Billen, G. Activity of heterotrophic bacteria and its coupling to primary production during spring phytoplankton bloom in the southern bight of the North Sea. Limnol. Oceanogr. 1984, 29, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Burban, P.-Y.; Lick, W.; Lick, J. The flocculation of grained sediments in estuarine waters. J. Geophys. Res. 1989, 94, 8323–8330. [Google Scholar] [CrossRef]
- Spicer, P.T.; Pratsinis, S. Shear-induced floccultion: The evolution of floc structure and the shape of the size distribution at steady state. Water Res. 1996, 30, 1049–1056. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Iacobellis, S.; Lick, W. Flocculation of fine-grained lake sediments due to a uniform shear stress. J. Great Lakes Res. 1987, 13, 135–146. [Google Scholar] [CrossRef]
- Fukuda, R.; Ogawa, H.; Nagata, T.; Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assenblages in marine environments. Appl. Environ. Microb. 1998, 64, 3352–3358. [Google Scholar] [CrossRef] [Green Version]
- Kepkay, P.E.; Johnson, B.D. Coagulation on bubbles allows the microbial respiration of oceanic dissolved organic carbon. Nature 1989, 385, 63–65. [Google Scholar] [CrossRef]
- Kepkay, P.E.; Johnson, B.D. Microbial response to organic particle generation by surface coagulation in seawater. Mar. Ecol. Prog. Ser. 1988, 48, 193–198. [Google Scholar] [CrossRef]
- Engel, A.; Meyerhöfer, M.; von Bröckel, K. Chemical and biological composition of suspended particles and aggregates in the Baltic Sea in summer (1999). Estua. Coast. Shelf Sci. 2002, 55, 729–741. [Google Scholar] [CrossRef]
- Fuhrman, J.A. Impact of viruses on bacterial processes. In Microbial Ecology of the Oceans; Kirchman, D.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 327–350. [Google Scholar]
- Strom, S.L. Bacterivory: Interactions between bacteria and their grazers. In Microbial Ecology of the Oceans; Kirchman, D.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 351–386. [Google Scholar]
- Vaqué, D.; Gasol, J.M.; Marrasé, C. Grazing rates on bacteria: The significance of methodology and ecological factors. Mar. Ecol. Prog. Ser. 1994, 109, 263–274. [Google Scholar] [CrossRef]
- McManus, G.B.; Fuhrman, J.A. Control of marine bacterioplankton populations: Measurement and significance of grazing. Hydrobiologia 1988, 159, 51–62. [Google Scholar] [CrossRef]
- Fuhrman, J.A.; Nobel, R.T. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 1995, 40, 1236–1242. [Google Scholar] [CrossRef]
- Steward, G.F.; Smith, D.C.; Azam, F. Abundance and production of bacteria and viruses in the Bering and Chukchi Seas. Mar. Ecol. Prog. Ser. 1996, 131, 287–300. [Google Scholar] [CrossRef]
- Hopkinson, C.S.; Sherr, B.; Wiebe, W.J. Size fractionated metabolism of voastal nicrobial plankton. Mar. Ecol. Prog. Ser. 1989, 51, 155–166. [Google Scholar] [CrossRef]
- Chen, C.-C.; Shiah, F.-K.; Chiang, K.-P.; Gong, G.-C.; Kemp, W.M. Effect of the Changjiang (Yangtze) River discharge on panktonic community respiration in the East China Sea. J. Geophys. Res. 2009, 114, C03005. [Google Scholar]
- Kemp, P.F.; Falkowski, P.G.; Flagg, C.N.; Phoel, W.C.; Smith, S.L.; Wallace, D.W.R.; Wirick, C.D. Modeling vertical oxygen and carbon flux during stratified spring and summer conditions on the continental shelf, Middle Atlantic Bight, eastern USA. Deep-Sea Res. II 1994, 41, 629–655. [Google Scholar] [CrossRef]
- Williams, P.J.l.B. Heterotrophic bacteria and the dynamics of dissolved organic matter. In Microbial Ecology of the Oceans; Kirchman, D.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 153–200. [Google Scholar]
- Coffin, R.B.; Connolly, J.P.; Harris, P.S. Availability of dissolved organic carbon to bacterioplankton examined by oxygen utilization. Mar. Ecol. Prog. Ser. 1993, 101, 9–22. [Google Scholar] [CrossRef]
- Findlay, S.; Pace, M.L.; Lints, D.; Howe, K. Bacterial metabolism of organic carbon in the tidal freshwater Hudson Estuary. Mar. Ecol. Prog. Ser. 1992, 89, 147–153. [Google Scholar] [CrossRef]
- Benner, R.; Strom, M. A critical evaluation of the analytical blank associated with DOC measurements by high-temperature catalytic oxidation. Mar. Chem. 1993, 41, 153–160. [Google Scholar] [CrossRef]
- Keil, R.G.; Kirchman, D.L. Contribution of dissolved free amino acids and ammonium to the nitrogen requirements of heterotrophic bacterioplankton. Mar. Ecol. Prog. Ser. 1991, 73, 1–10. [Google Scholar] [CrossRef]
- Keil, R.G.; Kirchman, D.L. Dissolved combined amino acids: Chemical form and utilization by marine bacteria. Limnol. Oceanogr. 1993, 38, 1256–1270. [Google Scholar] [CrossRef]
- Svensson, E.; Skoog, A.; Amend, J.P. Concentration and distribution of dissolved amino acids in a shallow hydrothermal system, Vulcano Island (Italy). Org. Geochem. 2004, 35, 1001–1014. [Google Scholar] [CrossRef]
- Skoog, A.; Benner, R. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol. Oceanogr. 1997, 42, 1803–1813. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. A Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: New York, NY, USA, 1984; p. 173. [Google Scholar]
- Hobbie, J.E.; Daley, R.J.; Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microb. 1977, 33, 1225–1228. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Ellison, A.M. A Primer of Ecological Statistics; Sinauer Associates Inc.: Sunderland, MA, USA, 2004; p. 492. [Google Scholar]
AP | TR | ||||||
---|---|---|---|---|---|---|---|
Parameter | Unit | Initial | Control | Treatment | Initial | Control | Treatment |
POC | μM | 28.97 ± 0.91 | 17.07 ± 0.63 | 18.57 ± 0.13 | 24.24 ± 0.80 | 19.86 ± 0.10 | 21.87 ± 1.07 |
PON | μM | 5.10 ± 0.22 | 2.83 ± 0.28 | 3.19 ± 0.18 | 2.70 ± 0.14 | 2.33 ± 0.10 | 2.63 ± 0.11 |
Particulate C/N | 5.56 ± 0.11 | 5.05 ± 0.43 | 5.85 ± 0.30 | 8.98 ± 0.41 | 8.51 ± 0.20 | 8.32 ± 0.24 | |
DOC | μM | 93.86 ± 4.96 | 89.94 ± 1.33 | 87.66 ± 4.27 | 209.11 ± 5.38 | 165.22 ± 15.91 | 128.88 ± 2.42 |
TDN | μM | 7.07 ± 0.15 | 6.84 ± 0.76 | 6.15 ± 0.07 | 18.59 ± 0.27 | 14.54 ± 1.43 | 12.61 ± 0.28 |
Dissolved C/N | 13.28 ± 0.42 | 13.28 ± 1.75 | 14.25 ± 0.77 | 11.25 ± 0.35 | 11.37 ± 0.24 | 10.36 ± 0.38 | |
PHAA | nM | 811 ± 22 | 725 ± 19 | 785 ± 25 | 510 ± 18 | 431 ± 17 | 474 ± 28 |
DHAA | nM | 766 ± 41 | 586 ± 35 | 490 ± 27 | 626 ± 9 | 557 ± 9 | 507 ± 17 |
PHNA | nM | 858 ± 37 | 615 ± 11 | 571 ± 22 | 617 ± 15 | 444 ± 12 | 572 ± 29 |
DHNA | nM | 2370 ± 63 | 2247 ± 45 | 2152 ± 49 | 2962 ± 93 | 2880 ± 98 | 2910 ± 56 |
Station | Sample | Group | ALA | ARG | ASP | GLU | GLY | HIS | ILE | LEU | MET | PHE | SER | THR | TYR | BALA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |||
AP | Particulate | Initial | 10.6 | 6.7 | 13.3 | 11.7 | 11.0 | 1.8 | 4.6 | 7.9 | 6.7 | 4.6 | 7.5 | 8.1 | 0.6 | 4.9 |
Control | 9.8 | 6.9 | 13.3 | 11.4 | 11.0 | 2.1 | 4.7 | 8.3 | 6.8 | 4.6 | 7.6 | 7.7 | 0.8 | 5.0 | ||
Treatment | 10.5 | 6.4 | 13.7 | 11.7 | 11.2 | 2.0 | 4.8 | 8.4 | 6.8 | 4.6 | 7.7 | 7.7 | 0.3 | 4.2 | ||
Dissolved | Initial | 11.2 | 6.0 | 13.2 | 11.4 | 11.0 | 2.1 | 5.2 | 7.8 | 5.1 | 4.4 | 8.3 | 7.8 | 2.2 | 4.3 | |
Control | 11.0 | 6.6 | 12.5 | 11.3 | 10.6 | 2.2 | 5.2 | 8.7 | 5.1 | 4.2 | 8.2 | 8.2 | 2.1 | 4.1 | ||
Treatment | 10.8 | 6.9 | 12.7 | 11.1 | 10.5 | 2.0 | 5.2 | 9.0 | 5.1 | 3.7 | 8.2 | 8.6 | 1.9 | 4.2 | ||
TR | Particulate | Initial | 14.0 | 7.1 | 12.2 | 10.0 | 10.3 | 1.6 | 5.1 | 7.9 | 10.4 | 3.8 | 7.4 | 9.1 | 1.1 | - |
Control | 13.8 | 7.8 | 13.0 | 10.2 | 9.3 | 1.3 | 4.4 | 7.8 | 12.0 | 3.9 | 6.8 | 9.5 | 0.1 | - | ||
Treatment | 15.3 | 7.4 | 12.8 | 10.3 | 9.5 | 1.2 | 4.5 | 8.1 | 11.7 | 3.7 | 7.2 | 8.3 | - | - | ||
Dissolved | Initial | 11.6 | 6.1 | 15.3 | 9.6 | 11.7 | 3.6 | 6.0 | 8.0 | 4.5 | 3.9 | 8.2 | 6.6 | 1.9 | 2.9 | |
Control | 11.7 | 6.4 | 15.0 | 9.5 | 11.4 | 3.3 | 5.5 | 8.2 | 5.0 | 4.0 | 8.2 | 7.3 | 1.7 | 2.8 | ||
Treatment | 11.9 | 6.0 | 14.8 | 9.4 | 12.0 | 3.0 | 5.0 | 8.2 | 6.0 | 4.0 | 8.3 | 7.0 | 2.0 | 2.5 |
Station | Sample | Group | Fucose | Rhamnose | Arabinose | Galactose | Glucose | Mannose | Xylose |
---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | |||
AP | Particulate | Initial | 9.4 | 7.0 | 8.4 | 20.8 | 35.8 | 9.5 | 9.0 |
Control | 10.6 | 9.9 | 10.7 | 17.7 | 23.3 | 11.5 | 16.3 | ||
Treatment | 10.5 | 9.5 | 10.4 | 17.3 | 24.5 | 11.3 | 16.7 | ||
Dissolved | Initial | 11.6 | 10.0 | 11.1 | 17.7 | 24.9 | 12.3 | 12.6 | |
Control | 11.8 | 10.3 | 10.3 | 17.4 | 24.6 | 12.7 | 12.9 | ||
Treatment | 11.5 | 9.8 | 10.7 | 18.5 | 24.9 | 12.1 | 12.5 | ||
TR | Particulate | Initial | 7.2 | 6.8 | 8.8 | 13.4 | 42.9 | 8.0 | 13.0 |
Control | 7.7 | 7.5 | 7.9 | 13.4 | 41.7 | 8.0 | 13.7 | ||
Treatment | 7.6 | 7.4 | 8.9 | 14.8 | 37.2 | 8.9 | 15.2 | ||
Dissolved | Initial | 8.1 | 9.3 | 7.0 | 12.5 | 37.4 | 15.5 | 10.3 | |
Control | 8.0 | 9.1 | 6.9 | 12.7 | 38.4 | 15.0 | 9.8 | ||
Treatment | 8.7 | 9.7 | 7.3 | 12.7 | 35.6 | 15.8 | 10.2 |
Station | Planktonic Community Respiration (mgC m−3 d−1) | |
---|---|---|
Control | Treatment | |
AP | 94.9 | 100.0 |
TR | 290.0 | 495.4 |
AP | TR | |||
---|---|---|---|---|
Control | Treatment | Control | Treatment | |
Fucose | 0.80 | 0.74 | 0.54 | 0.68 |
Rhamnose | 1.01 | 0.90 | 0.62 | 0.62 |
Arabinose | 0.90 | 0.82 | 0.65 | 0.63 |
Galactose | 0.60 | 0.55 | 0.76 | 1.23 |
Glucose | 0.46 | 0.45 | 0.77 | 1.12 |
Mannose | 0.87 | 0.78 | 0.75 | 0.84 |
Xylose | 1.29 | 1.23 | 0.74 | 0.80 |
Overall | 0.72 | 0.67 | 0.72 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-Y.; Skoog, A. Effects of Salinity on Abiotic Aggregation of Organic Matter and Subsequent Microbial Responses. Gels 2022, 8, 836. https://doi.org/10.3390/gels8120836
Chen T-Y, Skoog A. Effects of Salinity on Abiotic Aggregation of Organic Matter and Subsequent Microbial Responses. Gels. 2022; 8(12):836. https://doi.org/10.3390/gels8120836
Chicago/Turabian StyleChen, Tzong-Yueh, and Annelie Skoog. 2022. "Effects of Salinity on Abiotic Aggregation of Organic Matter and Subsequent Microbial Responses" Gels 8, no. 12: 836. https://doi.org/10.3390/gels8120836
APA StyleChen, T.-Y., & Skoog, A. (2022). Effects of Salinity on Abiotic Aggregation of Organic Matter and Subsequent Microbial Responses. Gels, 8(12), 836. https://doi.org/10.3390/gels8120836