Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Differential Scanning Calorimetric Analysis (DSC)
2.3. ATR-FTIR Analysis
2.4. Method for Preparation of Hydrogel
2.5. Physicochemical Evaluation of Hydrogels
2.5.1. pH of Hydrogel
2.5.2. Drug Content
2.5.3. Homogeneity
2.5.4. Viscosity
2.5.5. Acute Skin Irritation Test
2.6. In Vitro Release Study
2.7. Ex Vivo Permeation Study
2.8. Skin Drug Retention
2.9. Statistical Analysis
3. Results and Discussion
3.1. Differential Scanning Calorimetric Analysis (DSC)
3.2. FTIR Analysis
3.3. Physicochemical Evaluation of Hydrogel
3.4. In Vitro Release Study
3.5. Ex Vivo Permeation Study
3.6. Skin Drug Retention
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Čižinauskas, V.; Elie, N.; Brunelle, A.; Briedis, V. Skin penetration enhancement by natural oils for dihydroquercetin delivery. Molecules 2017, 22, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Cervantes, M.; Márquez-Mejía, E.; Cázares-Delgadillo, J.; Quintanar-Guerrero, D.; Ganem-Quintanar, A.; Ángeles-Anguiano, E. Chemical enhancers for the absorption of substances through the skin: Laurocapram and its derivatives. Drug Dev. Ind. Pharm. 2006, 32, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Viljoen, J.M.; Cowley, A.; Preez, J.D.; Gerber, M.; Plessis, J.D. Penetration enhancing effects of selected natural oils utilized in topical dosage forms. Drug Dev. Ind. Pharm. 2015, 41, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Caliskan, U.K.; Karakus, M.M. Essential oils as skin permeation boosters and their predicted effect mechanisms. J. Dermatol. Ski. Sci. 2020, 2, 24–30. [Google Scholar]
- Priyadarsini, K.I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [Green Version]
- Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Russo, L.L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med. 2015, 10, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015, 35, 645–651. [Google Scholar]
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—A review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [Green Version]
- Terzopoulou, Z.; Michopoulou, A.; Palamidi, A.; Koliakou, E.; Bikiaris, D. Preparation and evaluation of collagen-based patches as curcumin carriers. Polymers 2020, 12, 2393. [Google Scholar] [CrossRef]
- Amra, K.; Momin, M. Formulation evaluation of ketoconazole microemulsion-loaded hydrogel with nigella oil as a penetration enhancer. J. Cosmet. Dermatol. 2019, 18, 1742–1750. [Google Scholar] [CrossRef]
- Ghadi, Z.S.; Ebrahimnejad, P. Curcumin entrapped hyaluronan containing niosomes: Preparation, characterisation and in vitro/in vivo evaluation. J. Microencapsul. 2019, 36, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Sera, U.; Ramana, M. In vitro skin absorption and drug release—A comparison of four commercial hydrophilic gel preparations for topical use. Indian Pharm. 2006, 73, 356–360. [Google Scholar]
- Latif, M.S.; Al-Harbi, F.F.; Nawaz, A.; Rashid, S.A.; Farid, A.; Al Mohaini, M.; Alsalman, A.J.; Al Hawaj, M.A.; Alhashem, Y.N. Formulation and Evaluation of Hydrophilic Polymer Based Methotrexate Patches: In Vitro and In Vivo Characterization. Polymers 2022, 14, 1310. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Kaul, V.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Pandey, M.M.; Singhvi, G. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117392. [Google Scholar] [CrossRef]
- Chopra, M.; Jain, R.; Dewangan, A.K.; Varkey, S.; Mazumder, S. Design of curcumin loaded polymeric nanoparticles-optimization, formulation and characterization. J. Nanosci. Nanotechnol. 2016, 16, 9432–9442. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal ph of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Djekic, L.; Martinović, M.; Ćirić, A.; Fraj, J. Composite chitosan hydrogels as advanced wound dressings with sustained ibuprofen release and suitable application characteristics. Pharm. Dev. Technol. 2020, 25, 332–339. [Google Scholar] [CrossRef]
- Barradas, T.N.; Senna, J.P.; Cardoso, S.A.; de Holanda e Silva, K.G.; Mansur, C.R.E. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater. Sci. Eng. C 2018, 92, 245–253. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rather, R.A.; Yaseen, Z.; Shalla, A.H. Viscoelastic and smart swelling disposition of Carboxymethylcellulose based hydrogels substantiated by Gemini surfactant and in-vitro encapsulation and controlled release of Quercetin. Int. J. Biol. Macromol. 2022, 207, 374–386. [Google Scholar] [CrossRef]
- Vashisth, I.; Ahad, A.; Aqil, M.; Agarwal, S.P. Investigating the potential of essential oils as penetration enhancer for transdermal losartan delivery: Effectiveness and mechanism of action. Asian J. Pharm. Sci. 2014, 9, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Padula, C.; Pescina, S.; Nicoli, S.; Santi, P. New insights on the mechanism of fatty acids as buccal permeation enhancers. Pharmaceutics 2018, 10, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
F. Code | Drug (g) | Polymer (CMC) (g) | TEA (mL) | Ethanol (mL) | Eucalyptus Oil (%) | Aloe Vera Oil (%) | Clove Oil (%) | Water QS to Make 100 g |
---|---|---|---|---|---|---|---|---|
C1 | 2 | 2 | 1 | 10 | - | - | - | 100 |
C2 | 2 | 2 | 1 | 10 | 1 | 100 | ||
C3 | 2 | 2 | 1 | 10 | 3 | 100 | ||
C4 | 2 | 2 | 1 | 10 | 5 | 100 | ||
C5 | 2 | 2 | 1 | 10 | 1 | 100 | ||
C6 | 2 | 2 | 1 | 10 | 3 | 100 | ||
C7 | 2 | 2 | 1 | 10 | 5 | 100 | ||
C8 | 2 | 2 | 1 | 10 | 1 | 100 | ||
C9 | 2 | 2 | 1 | 10 | 3 | 100 | ||
C10 | 2 | 2 | 1 | 10 | 5 | 100 |
F. Code | pH | % Drug Content | Homogeneity | Viscosity (cps) at 10 rpm | Skin Irritation Test |
---|---|---|---|---|---|
C1 | 6.0 ± 0.6 | 86.1 ± 1.3% | + | 17,760 ± 4.3 | Nil |
C2 | 7.1 ± 0.4 | 91.3 ± 1.7% | +++ | 16,002 ± 5.2 | Nil |
C3 | 6.4 ± 0.7 | 88.9 ± 2.1% | ++ | 16,230 ± 4.8 | Nil |
C4 | 6.8 ± 0.3 | 93.7 ± 2.8% | +++ | 16,432 ± 5.1 | Nil |
C5 | 7.0 ± 0.2 | 92.9 ± 1.9% | +++ | 16,421 ± 4.9 | Nil |
C6 | 7.1 ± 0.2 | 94.6 ± 2.2% | ++ | 15,645 ± 5.4 | Nil |
C7 | 6.3 ± 0.5 | 91.2 ± 2.7% | ++ | 15,832 ± 3.9 | Nil |
C8 | 6.7 ± 0.6 | 92.6 ± 1.8% | +++ | 15,991 ± 4.3 | Nil |
C9 | 6.8 ± 0.7 | 93.8 ± 2.1% | ++ | 16,121 ± 4.9 | Nil |
C10 | 6.5 ± 0.9 | 88.8 ± 2.5% | + | 16,532 ± 5.8 | Nil |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, A.; Farid, A.; Safdar, M.; Latif, M.S.; Ghazanfar, S.; Akhtar, N.; Al Jaouni, S.K.; Selim, S.; Khan, M.W. Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers. Gels 2022, 8, 384. https://doi.org/10.3390/gels8060384
Nawaz A, Farid A, Safdar M, Latif MS, Ghazanfar S, Akhtar N, Al Jaouni SK, Selim S, Khan MW. Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers. Gels. 2022; 8(6):384. https://doi.org/10.3390/gels8060384
Chicago/Turabian StyleNawaz, Asif, Arshad Farid, Muhammad Safdar, Muhammad Shahid Latif, Shakira Ghazanfar, Nosheen Akhtar, Soad K. Al Jaouni, Samy Selim, and Muhammad Waseem Khan. 2022. "Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers" Gels 8, no. 6: 384. https://doi.org/10.3390/gels8060384
APA StyleNawaz, A., Farid, A., Safdar, M., Latif, M. S., Ghazanfar, S., Akhtar, N., Al Jaouni, S. K., Selim, S., & Khan, M. W. (2022). Formulation Development and Ex-Vivo Permeability of Curcumin Hydrogels under the Influence of Natural Chemical Enhancers. Gels, 8(6), 384. https://doi.org/10.3390/gels8060384