Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Foam Formation Ability
2.2. Characterization of the Structure of Foams Generated by Pumps
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Composition and Preparation of Foam Samples
4.2.2. Macroscopic Characterization of Foams
4.2.3. Spreadability (Texture Analyzer)
4.2.4. Microscopic Characterization of Foams and Image Analysis
4.2.5. Determination of the Surface Tension
4.2.6. Oscillometric Measurements
4.2.7. Amplitude Sweep
4.2.8. Frequency Sweep
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | API-free |
API | active ingredient |
DEX | dexpanthenol |
FE | foam expansion |
FVS | foam volume stability |
HA | hyaluronic acid |
NIA | niacinamide |
PF | polymer-free |
STF | surface tension |
XANT | xanthan gum |
References
- Parsa, M.; Trybala, A.; Malik, D.J.; Starov, V. Foam in Pharmaceutical and Medical Applications. Curr. Opin. Colloid Interface Sci. 2019, 44, 153–167. [Google Scholar] [CrossRef]
- Yanagisawa, N.; Tani, M.; Kurita, R. Dynamics and Mechanism of Liquid Film Collapse in a Foam. Soft Matter 2021, 17, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Arzhavitina, A.; Steckel, H. Foams for Pharmaceutical and Cosmetic Application. Int. J. Pharm. 2010, 394, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. A Critical Review of the Growth, Drainage and Collapse of Foams. Adv. Colloid Interface Sci. 2016, 228, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Anazadehsayed, A.; Rezaee, N.; Naser, J.; Nguyen, A.V. A Review of Aqueous Foam in Microscale. Adv. Colloid Interface Sci. 2018, 256, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Oetjen, K.; Bilke-Krause, C.; Madani, M.; Willers, T. Temperature Effect on Foamability, Foam Stability, and Foam Structure of Milk. Colloids Surf. Physicochem. Eng. Asp. 2014, 460, 280–285. [Google Scholar] [CrossRef]
- Kristen, N.; Von Klitzing, R. Effect of Polyelectrolyte/Surfactant Combinations on the Stability of Foam Films. Soft Matter 2010, 6, 849. [Google Scholar] [CrossRef]
- Bureiko, A.; Trybala, A.; Kovalchuk, N.; Starov, V. Current Applications of Foams Formed from Mixed Surfactant–Polymer Solutions. Adv. Colloid Interface Sci. 2015, 222, 670–677. [Google Scholar] [CrossRef]
- Langevin, D. Aqueous Foams and Foam Films Stabilised by Surfactants. Gravity-Free Studies. Comptes Rendus Mécanique 2017, 345, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.S.; Ettelaie, R. Foam Stability: Proteins and Nanoparticles. Curr. Opin. Colloid Interface Sci. 2004, 9, 314–320. [Google Scholar] [CrossRef]
- Lémery, E.; Briançon, S.; Chevalier, Y.; Bordes, C.; Oddos, T.; Gohier, A.; Bolzinger, M.-A. Skin Toxicity of Surfactants: Structure/Toxicity Relationships. Colloids Surf. Physicochem. Eng. Asp. 2015, 469, 166–179. [Google Scholar] [CrossRef]
- Shawan, M.M.A.K.; Islam, N.; Aziz, S.; Khatun, N.; Sarker, S.R.; Hossain, M.; Hossan, T.; Morshed, M.; Sarkar, M.; Shakil, S.; et al. Fabrication of Xanthan Gum: Gelatin (Xnt:Gel) Hybrid Composite Hydrogels for Evaluating Skin Wound Healing Efficacy. Mod. Appl. Sci. 2019, 13, 101. [Google Scholar] [CrossRef] [Green Version]
- Singhvi, G.; Hans, N.; Shiva, N.; Kumar Dubey, S. Xanthan Gum in Drug Delivery Applications. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 121–144. ISBN 978-0-12-817055-7. [Google Scholar]
- Berkó, S.; Maroda, M.; Bodnár, M.; Erős, G.; Hartmann, P.; Szentner, K.; Szabó-Révész, P.; Kemény, L.; Borbély, J.; Csányi, E. Advantages of Cross-Linked versus Linear Hyaluronic Acid for Semisolid Skin Delivery Systems. Eur. Polym. J. 2013, 49, 2511–2517. [Google Scholar] [CrossRef]
- Draelos, Z.D. A Clinical Evaluation of the Comparable Efficacy of Hyaluronic Acid-Based Foam and Ceramide-Containing Emulsion Cream in the Treatment of Mild-to-Moderate Atopic Dermatitis: Barrier Restoration Therapy in Atopic Dermatitis. J. Cosmet. Dermatol. 2011, 10, 185–188. [Google Scholar] [CrossRef]
- Loubière, K.; Hébrard, G. Influence of Liquid Surface Tension (Surfactants) on Bubble Formation at Rigid and Flexible Orifices. Chem. Eng. Process. Process Intensif. 2004, 43, 1361–1369. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-H.; Lee, W.-H.; Yang, Y.-M.; Chang, C.-H.; Maa, J.-R. Bubble Formation at an Orifice in Surfactant Solutions under Constant-Flow Conditions. Ind. Eng. Chem. Res. 2000, 39, 1473–1479. [Google Scholar] [CrossRef]
- Walstra, P. Principles of Foam Formation and Stability. In Foams: Physics, Chemistry and Structure; Wilson, A., Ed.; Springer Series in Applied Biology; Springer: London, UK, 1989; pp. 1–15. ISBN 978-1-4471-3809-9. [Google Scholar]
- Zhao, G.; Dai, C.; Zhang, Y.; Chen, A.; Yan, Z.; Zhao, M. Enhanced Foam Stability by Adding Comb Polymer Gel for In-Depth Profile Control in High Temperature Reservoirs. Colloids Surf. Physicochem. Eng. Asp. 2015, 482, 115–124. [Google Scholar] [CrossRef]
- Kealy, T.; Abram, A.; Hunt, B.; Buchta, R. The Rheological Properties of Pharmaceutical Foam: Implications for Use. Int. J. Pharm. 2008, 355, 67–80. [Google Scholar] [CrossRef]
- Zhao, Y.; Brown, M.B.; Jones, S.A. Pharmaceutical Foams: Are They the Answer to the Dilemma of Topical Nanoparticles? Nanomed. Nanotechnol. Biol. Med. 2010, 6, 227–236. [Google Scholar] [CrossRef]
- Postema, M.; Abraham, H.; Krejcar, O.; Assefa, D. Size Determination of Microbubbles in Optical Microscopy: A Best-Case Scenario. Opt. Express 2017, 25, 33588–33601. [Google Scholar] [CrossRef]
- Falusi, F.; Budai-Szűcs, M.; Csányi, E.; Berkó, S.; Spaits, T.; Csóka, I.; Kovács, A. Investigation of the Effect of Polymers on Dermal Foam Properties Using the QbD Approach. Eur. J. Pharm. Sci. 2022, 173, 106160. [Google Scholar] [CrossRef]
- Mirtič, J.; Papathanasiou, F.; Temova Rakuša, Ž.; GosencaMatjaž, M.; Roškar, R.; Kristl, J. Development of Medicated Foams That Combine Incompatible Hydrophilic and Lipophilic Drugs for Psoriasis Treatment. Int. J. Pharm. 2017, 524, 65–76. [Google Scholar] [CrossRef]
- Tiwari, S.P.; Steckel, J.A.; Sarma, M.; Bryant, J.; Lippert, C.A.; Widger, L.R.; Thompson, J.; Liu, K.; Siefert, N.; Hopkinson, D.; et al. Foaming Dependence on the Interface Affinities of Surfactant-like Molecules. Ind. Eng. Chem. Res. 2019, 58, 19877–19889. [Google Scholar] [CrossRef]
Sample | SFT (mN/m) | FE (%) | FVS (%) |
---|---|---|---|
PF-AF | 27.54 ± 0.11 | 172.2 ± 15.8 | 14.3 ± 1.8 |
XANT-AF | 29.20 ± 0.06 | 134.4 ± 1.9 | 100.0 ± 0.0 |
HA-AF | 28.78 ± 0.33 | 125.6 ± 3.8 | 94.6 ± 0.1 |
PF-DEX | 24.32 ± 1.18 | 180.0 ± 0.0 | 15.1 ± 0.7 |
XANT-DEX | 24.00 ± 3.85 | 114.4 ± 1.9 | 100.0 ± 0.0 |
HA-DEX | 28.40 ±0.30 | 144.4 ± 1.9 | 88.2 ± 0.7 |
PF-NIA | 29.20 ± 0.22 | 183.3 ± 0.0 | 11.8 ± 0.0 |
XANT-NIA | 29.49 ± 0.08 | 126.7 ± 3.3 | 100.0 ± 0.0 |
HA-NIA | 29.31 ± 0.01 | 113.3 ± 3.3 | 91.9 ± 1.3 |
Sample | Rheology | Spreadability | |||
---|---|---|---|---|---|
G’ at 10 rad/s (Pa) | G” at 10 rad/s (Pa) | tanδ at 10 rad/s (-) | Slope | Firmness (mN) | |
PF-AF | 3.86 ± 0.61 | 6.60 ± 0.87 | 1.76 ± 0.46 | 1.89 ± 0.33 | 120.9 ± 5.0 |
XANT-AF | 29.09 ± 3.81 | 8.71 ± 1.24 | 0.30 ± 0.03 | 0.51 ± 0.09 | 229 ± 6.7 |
HA-AF | 29.73 ± 6.29 | 9.83 ± 2.38 | 0.33 ± 0.01 | 0.53 ± 0.03 | 291.9 ± 5.8 |
PF-DEX | 8.51 ± 2.32 | 9.38 ± 0.69 | 1.14 ± 0.23 | 0.85 ± 0.08 | 127.9 ± 11.3 |
XANT-DEX | 40.35 ± 0.74 | 10.63 ± 0.38 | 0.26 ± 0.01 | 0.34 ± 0.03 | 275.8 ± 4.9 |
HA-DEX | 30.60 ± 1.27 | 15.62 ± 3.76 | 0.45 ± 0.02 | 0.56 ± 0.04 | 271.0 ± 8.9 |
PF-NIA | 9.32 ± 1.65 | 11.04 ± 1.35 | 1.19 ± 0.06 | 1.30 ± 0.46 | 145.9 ± 8.5 |
XANT-NIA | 38.02 ± 2.58 | 11.13 ± 0.49 | 0.29 ± 0.01 | 0.42 ± 0.03 | 254.2 ± 6.3 |
HA-NIA | 30.96 ± 0.26 | 11.29 ± 0.62 | 0.36 ± 0.02 | 0.47 ± 0.07 | 258.6 ± 14.4 |
Polymer Free Compositions | Xanthan Gum-Containing Compositions | Hyaluronic Acid-Containing Compositions | |||||||
---|---|---|---|---|---|---|---|---|---|
Components | PF-AF | PF-DEX | PF-NIA | XANT-AF | XANT-DEX | XANT-NIA | HA-AF | HA-DEX | HA-NIA |
Phase A | |||||||||
Labrasol ALF /surfactant/ | + | + | + | + | + | + | + | + | + |
Kolliphor RH40 /surfactant/ | + | + | + | + | + | + | + | + | + |
Phase B | |||||||||
Xanthan gum (Xant.) /polymer/ | - | - | - | 0.2% | 0.2% | 0.2% | - | - | - |
Hyaluronic acid (HA) /polymer/ | - | - | - | - | - | - | 0.2% | 0.2% | 0.2% |
Purified water /solvent/ | + | + | + | + | + | + | + | + | + |
Dexpanthenol /active ingredient/ | - | 5% | - | - | 5% | - | - | 5% | - |
Niacinamide /active ingredient/ | - | - | 5% | - | - | 5% | - | - | 5% |
Phase C | |||||||||
Phenoxyethanol /preservative/ | + | + | + | + | + | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falusi, F.; Berkó, S.; Kovács, A.; Budai-Szűcs, M. Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers. Gels 2022, 8, 413. https://doi.org/10.3390/gels8070413
Falusi F, Berkó S, Kovács A, Budai-Szűcs M. Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers. Gels. 2022; 8(7):413. https://doi.org/10.3390/gels8070413
Chicago/Turabian StyleFalusi, Fanni, Szilvia Berkó, Anita Kovács, and Mária Budai-Szűcs. 2022. "Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers" Gels 8, no. 7: 413. https://doi.org/10.3390/gels8070413
APA StyleFalusi, F., Berkó, S., Kovács, A., & Budai-Szűcs, M. (2022). Application of Xanthan Gum and Hyaluronic Acid as Dermal Foam Stabilizers. Gels, 8(7), 413. https://doi.org/10.3390/gels8070413