Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review
Abstract
:1. Introduction
2. Pure Metal–Organic Framework Gel
2.1. Metal(IV)-MOF Gels
2.2. Metal(III)-MOF Gels
2.3. Metal(II)-MOF Gels
2.4. Metal(I)-MOF Gels
2.5. Multi-Metal-MOF Gels
3. Metal–Organic Framework Composite Gel
3.1. Zr-MOF Composite Gel
3.2. Fe-MOF Composite Gel
3.3. Cu-MOF Composite Gel
3.4. Co-MOF Composite Gel
3.5. Other MOF Composite Gels
4. Adsorption of CWAs
4.1. MOFs for Adsorption of CWAs
4.2. MOF Gels for Adsorption of CWAs
5. Catalytic Detoxification of CWA
5.1. Nerve Agents and Simulants
5.2. Vesicant Agents and Simulants
6. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Szinicz, L. History of chemical and biological warfare agents. Toxicology 2005, 214, 167–181. [Google Scholar] [CrossRef]
- Sidell, F.R.; Borak, J. Chemical warfare agents: II. Nerve agents. Ann. Emerg. Med. 1992, 21, 865–871. [Google Scholar] [CrossRef]
- Mercey, G.; Verdelet, T.; Renou, J.; Kliachyna, M.; Baati, R.; Nachon, F.; Jean, L.; Renard, P.Y. Reactivators of Acetylcholinesterase Inhibited by Organophosphorus Nerve Agents. Acc. Chem. Res. 2012, 45, 756–766. [Google Scholar] [CrossRef]
- Xu, H.; Gao, Z.; Wang, P.; Xu, B.; Zhang, Y.; Long, L.; Zong, C.; Guo, L.; Jiang, W.; Ye, Q.; et al. Biological effects of adipocytes in sulfur mustard induced toxicity. Toxicology 2018, 393, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Khateri, S.; Ghanei, M.; Keshavarz, S.; Soroush, M.; Haines, D. Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J. Occup. Environ. Med. 2003, 45, 1136–1143. [Google Scholar] [CrossRef]
- Kehe, K.; Szinicz, L. Medical aspects of sulphur mustard poisoning. Toxicology 2005, 214, 198–209. [Google Scholar] [CrossRef]
- Jang, Y.J.; Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Update 1 of: Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2015, 115, PR1–PR76. [Google Scholar] [CrossRef]
- Eubanks, L.M.; Dickerson, T.J.; Janda, K.D. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem. Soc. Rev. 2007, 36, 458–470. [Google Scholar] [CrossRef]
- Khan, A.W.; Kotta, S.; Ansari, S.H.; Ali, J.; Sharma, R.K. Recent Advances in Decontamination of Chemical Warfare Agents. Def. Sci. J. 2013, 63, 487–496. [Google Scholar] [CrossRef]
- Prasad, G.K.; Ramacharyulu, P.V.R.K.; Singh, B. Nanomaterials based decontaminants against chemical warfare agents. J. Sci. Ind. Res. 2011, 70, 91–104. [Google Scholar]
- Yang, J.; Gao, M.; Zhang, M.; Zhang, Y.; Gao, M.; Wang, Z.; Xu, L.; Wang, X.; Shen, B. Advances in the adsorption and degradation of chemical warfare agents and simulants by Metal-organic frameworks. Coord. Chem. Rev. 2023, 493, 215289. [Google Scholar] [CrossRef]
- Kiani, S.S.; Farooq, A.; Ahmad, M.; Irfan, N.; Nawaz, M.; Irshad, M.A. Impregnation on activated carbon for removal of chemical warfare agents (CWAs) and radioactive content. Environ. Sci. Pollut. Res. 2021, 28, 60477–60494. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Das, P.; Atilgan, A.; Li, P.; Hupp, J.T.; Islamoglu, T.; Kalow, J.A.; Farha, O.K. Reactive Porous Polymers for Detoxification of a Chemical Warfare Agent Simulant. Chem. Mater. 2020, 32, 9299–9306. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Sun, Z.-B.; Zhang, M.; Zhao, S.-N.; Luo, P.; Gong, C.-H.; Liu, W.-X.; Zang, S.-Q. Cooperative Catalysis between Dual Copper Centers in a Metal-Organic Framework for Efficient Detoxification of Chemical Warfare Agent Simulants. J. Am. Chem. Soc. 2022, 144, 21046–21055. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Song, J.; Si, Y.; Yu, J.; Ding, B. Superelastic and Photothermal RGO/Zr-Doped TiO2 Nanofibrous Aerogels Enable the Rapid Decomposition of Chemical Warfare Agents. Nano Lett. 2022, 22, 4368–4375. [Google Scholar] [CrossRef]
- Couzon, N.; Dhainaut, J.; Campagne, C.; Royer, S.; Loiseau, T.; Volkringer, C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs)-A review. Coord. Chem. Rev. 2022, 467, 214598. [Google Scholar] [CrossRef]
- Kalita, P.; Paul, R.; Boruah, A.; Dao, D.Q.; Bhaumik, A.; Mondal, J. A critical review on emerging photoactive porous materials for sulfide oxidation and sulfur mustard decontamination. Green Chem. 2023, 25, 5789–5812. [Google Scholar] [CrossRef]
- Holdren, S.; Tsyshevsky, R.; Fears, K.; Owrutsky, J.; Wu, T.; Wang, X.; Eichhorn, B.W.; Kuklja, M.M.; Zachariah, M.R. Adsorption and Destruction of the G-Series Nerve Agent Simulant Dimethyl Methylphosphonate on Zinc Oxide. ACS Catal. 2019, 9, 902–911. [Google Scholar] [CrossRef]
- Hou, Y.J.; An, H.Y.; Zhang, Y.M.; Hu, T.; Yang, W.; Chang, S.Z. Rapid Destruction of Two Types of Chemical Warfare Agent Simulants by Hybrid Polyoxomolybdates Modified by Carboxylic Acid Ligands. ACS Catal. 2018, 8, 6062–6069. [Google Scholar] [CrossRef]
- Snider, V.G.; Hill, C.L. Functionalized reactive polymers for the removal of chemical warfare agents: A review. J. Hazard. Mater. 2023, 442, 130015. [Google Scholar] [CrossRef]
- Sheng, K.; Huang, X.-Q.; Wang, R.; Wang, W.-Z.; Gao, Z.-Y.; Tung, C.-H.; Sun, D. Decagram-scale synthesis of heterometallic Ag/Ti cluster as sustainable catalyst for selective oxidation of sulfides. J. Catal. 2023, 417, 185–193. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Liu, Y.; Jiang, S.; Li, P.; Hao, Y.; Shao, P.; Yin, A.; Feng, X.; Wang, B. Ferrocene-Linkage-Facilitated Charge Separation in Conjugated Microporous Polymers. Angew. Chem.-Int. Ed. 2019, 58, 4221–4226. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, J.; Liu, H.; Sun, X.; Chi, Y.; Hu, C. Recoverable amphiphilic polyoxoniobates catalyzing oxidative and hydrolytic decontamination of chemical warfare agent simulants in emulsion. J. Hazard. Mater. 2018, 344, 994–999. [Google Scholar] [CrossRef]
- Cao, M.; Pang, R.; Wan, Q.-Y.; Han, Z.; Wang, Z.-Y.; Dong, X.-Y.; Li, S.-F.; Zang, S.-Q.; Mak, T.C.W. Porphyrinic Silver Cluster Assembled Material for Simultaneous Capture and Photocatalysis of Mustard-Gas Simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509. [Google Scholar] [CrossRef] [PubMed]
- Bobbitt, N.S.; Mendonca, M.L.; Howarth, A.J.; Islamoglu, T.; Hupp, J.T.; Farha, O.K.; Snurr, R.Q. Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents. Chem. Soc. Rev. 2017, 46, 3357–3385. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Peterson, G.W. Metal-Organic Frameworks for Air Purification of Toxic Chemicals. Chem. Rev. 2014, 114, 5695–5727. [Google Scholar] [CrossRef]
- Islamoglu, T.; Chen, Z.; Wasson, M.C.; Buru, C.T.; Kirlikovali, K.O.; Afrin, U.; Mian, M.R.; Farha, O.K. Metal-Organic Frameworks against Toxic Chemicals. Chem. Rev. 2020, 120, 8130–8160. [Google Scholar] [CrossRef]
- Amiri, A.; Mirzaei, M. Metal–Organic Frameworks in Analytical Chemistry; The Royal Society of Chemistry: London, UK, 2023. [Google Scholar]
- Khajavian, R.; Mirzaei, M.; Alizadeh, H. Current status and future prospects of metal-organic frameworks at the interface of dye-sensitized solar cells. Dalton Trans. 2020, 49, 13936–13947. [Google Scholar] [CrossRef]
- Nazari, M.; Saljooghi, A.S.; Ramezani, M.; Alibolandi, M.; Mirzaei, M. Current status and future prospects of nanoscale metal-organic frameworks in bioimaging. J. Mater. Chem. B 2022, 10, 8824–8851. [Google Scholar] [CrossRef]
- Bazargan, M.; Ghaemi, F.; Amiri, A.; Mirzaei, M. Metal-organic framework-based sorbents in analytical sample preparation. Coord. Chem. Rev. 2021, 445, 214107. [Google Scholar] [CrossRef]
- Abdar, A.; Amiri, A.; Mirzaei, M. Electrospun mesh pattern of polyvinyl alcohol/zirconium-based metal-organic framework nanocomposite as a sorbent for extraction of phthalate esters. J. Chromatography. A 2023, 1707, 464295. [Google Scholar] [CrossRef]
- Bazargan, M.; Mirzaei, M.; Amiri, A.; Ritchie, C. Efficient dispersive micro solid-phase extraction of antidepressant drugs by a robust molybdenum-based coordination polymer. Microchim. Acta 2021, 188, 108. [Google Scholar] [CrossRef]
- Abdar, A.; Amiri, A.; Mirzaei, M. Semi-automated solid-phase extraction of polycyclic aromatic hydrocarbons based on stainless steel meshes coated with metal-organic framework/graphene oxide. Microchem. J. 2022, 177, 107269. [Google Scholar] [CrossRef]
- Hassanpoor, A.; Mirzaei, M.; Shahrak, M.N.; Majcher, A.M. Developing a magnetic metal organic framework of copper bearing a mixed azido/butane-1,4-dicarboxylate bridge: Magnetic and gas adsorption properties. Dalton Trans. 2018, 47, 13849–13860. [Google Scholar] [CrossRef]
- Liu, Y.; Howarth, A.J.; Vermeulen, N.A.; Moon, S.-Y.; Hupp, J.T.; Farha, O.K. Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks. Coord. Chem. Rev. 2017, 346, 101–111. [Google Scholar] [CrossRef]
- Barton, H.F.; Jamir, J.D.; Davis, A.K.; Peterson, G.W.; Parsons, G.N. Doubly Protective MOF-Photo-Fabrics: Facile Template-Free Synthesis of PCN-222-Textiles Enables Rapid Hydrolysis, Photo-Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants. Chem.-A Eur. J. 2021, 27, 1465–1472. [Google Scholar] [CrossRef]
- Zhao, H.; Tao, C.-a.; Zhao, S.; Zou, X.; Wang, F.; Wang, J. Porphyrin-Moiety-Functionalized Metal-Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants. ACS Appl. Mater. Interfaces 2023, 15, 3297–3306. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Mai, Z.; Wang, T.; Liu, D. Strategies for conversion between metal-organic frameworks and gels. Coord. Chem. Rev. 2020, 421, 213461. [Google Scholar] [CrossRef]
- Hou, J.; Sapnik, A.F.; Bennett, T.D. Metal-organic framework gels and monoliths. Chem. Sci. 2020, 11, 310–323. [Google Scholar] [CrossRef]
- Chattopadhyay, P.K.; Singha, N.R. MOF and derived materials as aerogels: Structure, property, and performance relations. Coord. Chem. Rev. 2021, 446, 214125. [Google Scholar] [CrossRef]
- Ma, S.; Xu, J.; Sohrabi, S.; Zhang, J. Metal-organic gels and their derived materials for electrochemical applications. J. Mater. Chem. A 2023, 11, 11572–11606. [Google Scholar] [CrossRef]
- Wychowaniec, J.K.; Saini, H.; Scheibe, B.; Dubal, D.P.; Schneemann, A.; Jayaramulu, K. Hierarchical porous metal-organic gels and derived materials: From fundamentals to potential applications. Chem. Soc. Rev. 2022, 51, 9068–9126. [Google Scholar] [CrossRef]
- Liu, G.; Li, S.; Shi, C.; Huo, M.; Lin, Y. Progress in Research and Application of Metal-Organic Gels: A Review. Nanomaterials 2023, 13, 1178. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, S.; Yu, H.; Zeng, F.; Li, X.; Su, Z. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal. J. Colloid Interface Sci. 2020, 561, 211–219. [Google Scholar] [CrossRef]
- Zheng, X.; Rehman, S.; Zhang, P. Room temperature synthesis of monolithic MIL-100(Fe) in aqueous solution for energy-efficient removal and recovery of aromatic volatile organic compounds. J. Hazard. Mater. 2023, 442, 129998. [Google Scholar] [CrossRef]
- Li, L.; Xiang, S.; Cao, S.; Zhang, J.; Ouyang, G.; Chen, L.; Su, C.-Y. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels. Nat. Commun. 2013, 4, 1774–1779. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Zhang, J.; Chi, Z.; Chen, L.; Su, C.-Y. Luminescent metal-organic gels with tetraphenylethylene moieties: Porosity and aggregation-induced emission. RSC Adv. 2013, 3, 16340–16344. [Google Scholar] [CrossRef]
- Wang, M.; Day, S.; Wu, Z.; Wan, X.; Ye, X.; Cheng, B. A new type of porous Zn (II) metal-organic gel designed for effective adsorption to methyl orange dye. Colloids Surf. A-Physicochem. Eng. Asp. 2021, 628, 127335. [Google Scholar] [CrossRef]
- Tian, T.; Zeng, Z.; Vulpe, D.; Casco, M.E.; Divitini, G.; Midgley, P.A.; Silvestre-Albero, J.; Tan, J.-C.; Moghadam, P.Z.; Fairen-Jimenez, D. A sol-gel monolithic metal-organic framework with enhanced methane uptake. Nat. Mater. 2018, 17, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, X.; Zhang, J.; Su, C.-Y. Luminescent coordination polymer gels based on rigid terpyridyl phosphine and Ag(I). Dalton Trans. 2012, 41, 3616–3619. [Google Scholar] [CrossRef]
- Keum, Y.; Kim, B.; Byun, A.; Park, J. Synthesis and Photocatalytic Properties of Titanium-Porphyrinic Aerogels. Angew. Chem. -Int. Ed. 2020, 59, 21591–21596. [Google Scholar] [CrossRef]
- Qin, Z.-S.; Dong, W.-W.; Zhao, J.; Wu, Y.-P.; Zhang, Q.; Li, D.-S. A water-stable Tb(III)-based metal-organic gel (MOG) for detection of antibiotics and explosives. Inorg. Chem. Front. 2018, 5, 120–126. [Google Scholar] [CrossRef]
- Ragon, F.; Campo, B.; Yang, Q.; Martineau, C.; Wiersum, A.D.; Lago, A.; Guillerm, V.; Hemsley, C.; Eubank, J.F.; Vishnuvarthan, M.; et al. Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: Structural features and sorption properties. J. Mater. Chem. A 2015, 3, 3294–3309. [Google Scholar] [CrossRef]
- Ragon, F.; Horcajada, P.; Chevreau, H.; Hwang, Y.K.; Lee, U.H.; Miller, S.R.; Devic, T.; Chang, J.S.; Serre, C. In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorg. Chem. 2014, 53, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Y.; Vaesen, S.; Ragon, F.; Wiersum, A.D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P.L.; et al. A Water Stable Metal-Organic Framework with Optimal Features for CO2 Capture. Angew. Chem.-Int. Ed. 2013, 52, 10316–10320. [Google Scholar] [CrossRef]
- Liu, L.P.; Zhang, J.Y.; Fang, H.B.; Chen, L.P.; Su, C.Y. Metal-Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide. Chem.-Asian J. 2016, 11, 2278–2283. [Google Scholar] [CrossRef]
- Bueken, B.; Van Velthoven, N.; Willhammar, T.; Stassin, T.; Stassen, I.; Keen, D.A.; Baron, G.V.; Denayer, J.F.M.; Ameloot, R.; Bals, S.; et al. Gel-based morphological design of zirconium metal–organic frameworks. Chem. Sci. 2017, 8, 3939–3948. [Google Scholar] [CrossRef]
- Somjit, V.; Thinsoongnoen, P.; Sriphumrat, K.; Pimu, S.; Arayachukiat, S.; Kongpatpanich, K. Metal-Organic Framework Aerogel for Full pH Range Operation and Trace Adsorption of Arsenic in Water. ACS Appl. Mater. Interfaces 2022, 14, 40005–40013. [Google Scholar] [CrossRef] [PubMed]
- Lohe, M.R.; Rose, M.; Kaskel, S. Metal–organic framework (MOF) aerogels with high micro- and macroporosity. Chem. Commun. 2009, 6056–6058. [Google Scholar] [CrossRef]
- Hu, Y.; Fan, Y.; Huang, Z.; Song, C.; Li, G. In situ fabrication of metal–organic hybrid gels in a capillary for online enrichment of trace analytes in aqueous samples. Chem. Commun. 2012, 48, 3966–3968. [Google Scholar] [CrossRef]
- Xiang, S.; Li, L.; Zhang, J.; Tan, X.; Cui, H.; Shi, J.; Hu, Y.; Chen, L.; Su, C.-Y.; James, S.L. Porous organic–inorganic hybrid aerogels based on Cr3+/Fe3+ and rigid bridging carboxylates. J. Mater. Chem. 2012, 22, 1862–1867. [Google Scholar] [CrossRef]
- He, L.; Peng, Z.W.; Jiang, Z.W.; Tang, X.Q.; Huang, C.Z.; Li, Y.F. Novel Iron(III)-Based Metal-Organic Gels with Superior Catalytic Performance toward Luminol Chemiluminescence. ACS Appl. Mater. Interfaces 2017, 9, 31834–31840. [Google Scholar] [CrossRef]
- Fan, J.; Li, L.; Rao, H.-S.; Yang, Q.-L.; Zhang, J.; Chen, H.-Y.; Chen, L.; Kuang, D.-B.; Su, C.-Y. A novel metal-organic gel based electrolyte for efficient quasi-solid-state dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 15406–15413. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, S.; Lee, J.Y.; Jaworski, J.; Jung, J.H. Instant Visual Detection of Picogram Levels of Trinitrotoluene by Using Luminescent Metal-Organic Framework Gel-Coated Filter Paper. Chem.-A Eur. J. 2013, 19, 16665–16671. [Google Scholar] [CrossRef]
- Cheng, Y.; Yin, M.; Ren, X.; Feng, Q.; Wang, J.; Zhou, Y. A coordination polymeric gelator based on Ag(l) and 2, 7-bis(1-imidazole)fluorene: Synthesis, characterization, gelation and antibacterial properties. Mater. Lett. 2015, 139, 141–144. [Google Scholar] [CrossRef]
- Yang, K.; Chen, L.; Duan, X.; Song, G.; Sun, J.; Chen, A.; Xie, X. Ligand-controlled bimetallic Co/Fe MOF xerogels for CO2 photocatalytic reduction. Ceram. Int. 2023, 49, 16061–16069. [Google Scholar] [CrossRef]
- Lu, M.; Deng, Y.; Luo, Y.; Lv, J.; Li, T.; Xu, J.; Chen, S.-W.; Wang, J. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal. Chem. 2019, 91, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Lou, Y.; Chen, X.-B.; Shi, Z.; Xu, Y. Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chem. Eng. J. 2019, 356, 227–235. [Google Scholar] [CrossRef]
- Fan, Y.; Liang, H.; Jian, M.; Liu, R.; Zhang, X.; Hu, C.; Liu, H. Removal of dimethylarsinate from water by robust NU-1000 aerogels: Impact of the aerogel materials. Chem. Eng. J. 2023, 455, 140387. [Google Scholar] [CrossRef]
- Li, Z.; Liu, C.; Frick, J.J.; Davey, A.K.; Dods, M.N.; Carraro, C.; Senesky, D.G.; Maboudian, R. Synthesis and characterization of UiO-66-NH2 incorporated graphene aerogel composites and their utilization for absorption of organic liquids. Carbon 2023, 201, 561–567. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Cranston, E.D.; Zhu, S.P. Flexible and Porous Nanocellulose Aerogels with High Loadings of Metal-Organic-Framework Particles for Separations Applications. Adv. Mater. 2016, 28, 7652–7657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.-F.; Hao, D.; Feng, Y.; Yao, J. Lightweight UiO-66/cellulose aerogels constructed through self-crosslinking strategy for adsorption applications. Chem. Eng. J. 2019, 371, 138–144. [Google Scholar] [CrossRef]
- Li, H.; Ye, M.; Zhang, X.; Zhang, H.; Wang, G.; Zhang, Y. Hierarchical Porous Iron Metal-Organic Gel/Bacterial Cellulose Aerogel: Ultrafast, Scalable, Room-Temperature Aqueous Synthesis, and Efficient Arsenate Removal. ACS Appl. Mater. Interfaces 2021, 13, 47684–47695. [Google Scholar] [CrossRef]
- Liu, L.; Yan, Y.; Cai, Z.H.; Lin, S.X.; Hu, X.B. Growth-Oriented Fe-Based MOFs Synergized with Graphene Aerogels for High-Performance Supercapacitors. Adv. Mater. Interfaces 2018, 5, 1701548. [Google Scholar] [CrossRef]
- Jiang, G.; Jia, Y.; Wang, J.; Sun, Y.; Zhou, Y.; Ruan, Y.; Xia, Y.; Xu, T.; Xie, S.; Zhang, S.; et al. Facile preparation of novel Fe-BTC@PAN nanofibrous aerogel membranes for highly efficient continuous flow degradation of organic dyes. Sep. Purif. Technol. 2022, 300, 121753. [Google Scholar] [CrossRef]
- He, X.; Wang, L.; Sun, S.; Yang, X.; Tian, H.; Xia, Z.; Li, X.; Yan, X.; Pu, X.; Jiao, Z. Self-assembled synthesis of recyclable g-C3N4/NH2-MIL-53(Fe) aerogel for enhanced photocatalytic degradation of organic pollutants. J. Alloys Compd. 2023, 946, 169391. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, H.; Zeng, F.; Li, X.; Sun, J.; Li, C.; Lin, H.; Su, Z. HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydr. Polym. 2021, 255, 117402. [Google Scholar] [CrossRef]
- Nuzhdin, A.L.; Shalygin, A.S.; Artiukha, E.A.; Chibiryaev, A.M.; Bukhtiyarova, G.A.; Martyanov, O.N. HKUST-1 silica aerogel composites: Novel materials for the separation of saturated and unsaturated hydrocarbons by conventional liquid chromatography. RSC Adv. 2016, 6, 62501–62507. [Google Scholar] [CrossRef]
- Hu, Y.; Jiang, Y.; Ni, L.; Huang, Z.; Liu, L.; Ke, Q.; Xu, H. An elastic MOF/graphene aerogel with high photothermal efficiency for rapid removal of crude oil. J. Hazard. Mater. 2023, 443, 130339. [Google Scholar] [CrossRef]
- Rosado, A.; Borras, A.; Fraile, J.; Navarro, J.A.R.; Suarez-Garcia, F.; Stylianou, K.C.; Lopez-Periago, A.M.; Giner Planas, J.; Domingo, C.; Yazdi, A. HKUST-1 Metal-Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation. ACS Appl. Nano Mater. 2021, 4, 12712–12725. [Google Scholar] [CrossRef]
- Ulker, Z.; Erucar, I.; Keskin, S.; Erkey, C. Novel nanostructured composites of silica aerogels with a metal organic framework. Microporous Mesoporous Mater. 2013, 170, 352–358. [Google Scholar] [CrossRef]
- Shalygin, A.S.; Nuzhdin, A.L.; Bukhtiyarova, G.A.; Martyanov, O.N. Preparation of HKUST-1@silica aerogel composite for continuous flow catalysis. J. Sol-Gel Sci. Technol. 2017, 84, 446–452. [Google Scholar] [CrossRef]
- Ramasubbu, V.; Alwin, S.; Mothi, E.M.; Shajan, X.S. TiO2 aerogel-Cu-BTC metal-organic framework composites for enhanced photon absorption. Mater. Lett. 2017, 197, 236–240. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J.; Tian, X.; Guo, F.; Wang, C.; Zhang, J.; Jiang, M. Facile in-situ growth of metal-organic framework layer on carboxylated nanocellulose/chitosan aerogel spheres and their high-efficient adsorption and catalytic performance. Appl. Surf. Sci. 2022, 599, 153974. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, B.; Chen, X.; Li, D.; Zhou, C.; Guo, Z.-R.; Xu, W.; Yang, S.; Zhang, J. One-Droplet Synthesis of Polysaccharide/Metal-Organic Framework Aerogels for Gas Adsorption. Acs Appl. Polym. Mater. 2023, 5, 4327–4332. [Google Scholar] [CrossRef]
- Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127. [Google Scholar] [CrossRef]
- Zhou, Q.; Jin, B.; Zhao, P.; Chu, S.; Peng, R. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater. Chem. Eng. J. 2021, 419, 129622. [Google Scholar] [CrossRef]
- Qu, W.; Wang, Z.; Wang, X.; Wang, Z.; Yu, D.; Ji, D. High-hydrophobic ZIF-67@PLA honeycomb aerogel for efficient oil-water separation. Colloids Surf. A-Physicochem. Eng. Asp. 2023, 658, 130768. [Google Scholar] [CrossRef]
- Song, W.; Zhu, M.; Zhu, Y.; Zhao, Y.; Yang, M.; Miao, Z.; Ren, H.; Ma, Q.; Qian, L. Zeolitic imidazolate framework-67 functionalized cellulose hybrid aerogel: An environmentally friendly candidate for dye removal. Cellulose 2020, 27, 2161–2172. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, C.; Li, K.; Zhang, X.; Deng, S. Enhanced removal of Cu(II) ions from aqueous solution by in-situ synthesis of zeolitic imidazolate framework-67@wood aerogel composite adsorbent. Wood Mater. Sci. Eng. 2023, 18, 1–11. [Google Scholar] [CrossRef]
- Chen, G.; He, S.; Shi, G.; Ma, Y.; Ruan, C.; Jin, X.; Chen, Q.; Liu, X.; Dai, H.; Chen, X.; et al. In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water. Chem. Eng. J. 2021, 423, 130184. [Google Scholar] [CrossRef]
- Yao, L.; Gu, Q.; Yu, X. Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries. ACS Nano 2021, 15, 3228–3240. [Google Scholar] [CrossRef]
- Yang, Q.X.; Lu, R.; Ren, S.S.; Chen, C.T.; Chen, Z.J.; Yang, X.Y. Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water. Chem. Eng. J. 2018, 348, 202–211. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Liang, Q.L.; Han, Q.; Wan, W.; Ding, M.Y. Metal-organic frameworks@graphene hybrid aerogels for solid-phase extraction of nonsteroidal anti-inflammatory drugs and selective enrichment of proteins. Analyst 2016, 141, 4219–4226. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Hao, S.; Fan, R.; Qin, M.; Chen, W.; Wang, P.; Yang, Y. Hydrophobicity-Adjustable MOF Constructs Superhydrophobic MOF-rGO Aerogel for Efficient Oil-Water Separation. Acs Appl. Mater. Interfaces 2020, 12, 56435–56444. [Google Scholar] [CrossRef]
- Ni, Z.; Jerrell, J.P.; Cadwallader, K.R.; Masel, R.I. Metal−Organic Frameworks as Adsorbents for Trapping and Preconcentration of Organic Phosphonates. Anal. Chem. 2007, 79, 1290–1293. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.-R.; Ryu, S.G.; Kim, H.S. Rapid adsorption and removal of sulfur mustard with zeolitic imidazolate frameworks ZIF-8 and ZIF-67. Microporous Mesoporous Mater. 2020, 293, 109819. [Google Scholar] [CrossRef]
- Emelianova, A.; Reed, A.; Basharova, E.A.; Kolesnikov, A.L.; Gor, G.Y. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2023, 15, 18559–18567. [Google Scholar] [CrossRef]
- Plonka, A.M.; Wang, Q.; Gordon, W.O.; Balboa, A.; Troya, D.; Guo, W.; Sharp, C.H.; Senanayake, S.D.; Morris, J.R.; Hill, C.L.; et al. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks. J. Am. Chem. Soc. 2017, 139, 599–602. [Google Scholar] [CrossRef]
- Asha, P.; Sinha, M.; Mandal, S. Effective removal of chemical warfare agent simulants using water stable metal-organic frameworks: Mechanistic study and structure-property correlation. RSC Adv. 2017, 7, 6691–6696. [Google Scholar] [CrossRef]
- Son, F.; Wasson, M.C.; Islamoglu, T.; Chen, Z.; Gong, X.; Hanna, S.L.; Lyu, J.; Wang, X.; Idrees, K.B.; Mahle, J.J.; et al. Uncovering the Role of Metal-Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chem. Mater. 2020, 32, 4609–4617. [Google Scholar] [CrossRef]
- Zhou, C.; Yuan, B.; Zhang, S.; Yang, G.; Lu, L.; Li, H.; Tao, C.-a. Ultrafast Degradation and High Adsorption Capability of a Sulfur Mustard Simulant under Ambient Conditions Using Granular UiO-66-NH2 Metal-Organic Gels. Acs Appl. Mater. Interfaces 2022, 14, 23383–23391. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, X.; Ding, B.; Yu, J.; Si, Y. Interfacial engineered superelastic metal-organic framework aerogels with van-der-Waals barrier channels for nerve agents decomposition. Nat. Commun. 2023, 14, 2116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, S.; Pan, H.; Yang, G.; Wang, L.; Tao, C.-a.; Li, H. Synthesis of macroscopic monolithic metal-organic gels for ultra-fast destruction of chemical warfare agents. RSC Adv. 2021, 11, 22125–22130. [Google Scholar] [CrossRef] [PubMed]
- Shena, C.; Mao, Z.; Xua, H.; Zhang, L.; Zhonga, Y.; Wang, B.; Feng, X.; Taod, C.-a.; Suia, X. Catalytic MOF-loaded cellulose sponge for rapid degradation of chemical warfare agents simulant. Carbohydr. Polym. 2019, 213, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.Y.; Song, Y.; Lee, J.-H.; Kim, H.; Cho, S.; Baek, K.-Y. Robust Nanocellulose/Metal-Organic Framework Aerogel Composites: Superior Performance for Static and Continuous Disposal of Chemical Warfare Agent Simulants. ACS Appl. Mater. Interfaces 2021, 13, 33516–33523. [Google Scholar] [CrossRef]
- Ma, K.; Wasson, M.C.; Wang, X.; Zhang, X.; Idrees, K.B.; Chen, Z.; Wu, Y.; Lee, S.-J.; Cao, R.; Chen, Y.; et al. Near-instantaneous catalytic hydrolysis of organophosphorus nerve agents with zirconium-based MOF/hydrogel composites. Chem Catal. 2021, 1, 721–733. [Google Scholar] [CrossRef]
- Jiang, N.; Liu, H.; Zhao, G.; Li, H.; Yang, S.; Xu, X.; Zhuang, X.; Cheng, B. Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent. J. Colloid Interface Sci. 2023, 640, 192–198. [Google Scholar] [CrossRef]
- Su, H.; Huang, P.; Wu, F.-Y. Visualizing the degradation of nerve agent simulants using functionalized Zr-based MOFs from solution to hydrogels. Chem. Commun. 2021, 57, 11681–11684. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Zhang, M.; Hu, Q.; Li, B.-X.; Qu, J.; Yu, Z.-Z.; Yang, D. Spontaneously Super-Hygroscopic MOF-Gel Microreactors for Efficient Detoxification of Nerve Agent Simulant in Atmospheric Environments. Appl. Catal. B Environ. 2023, 328, 122516. [Google Scholar] [CrossRef]
- Ma, K.; Cheung, Y.H.; Kirlikovali, K.O.; Xie, H.; Idrees, K.B.; Wang, X.; Islamoglu, T.; Xin, J.H.; Farha, O.K. Fibrous Zr-MOF Nanozyme Aerogels with Macro-Nanoporous Structure for Enhanced Catalytic Hydrolysis of Organophosphate Toxins. Adv. Mater. 2023, 35, 2300951. [Google Scholar] [CrossRef]
- Cheung, Y.H.; Ma, K.; Wasson, M.C.; Wang, X.; Idrees, K.B.; Islamoglu, T.; Mahle, J.; Peterson, G.W.; Xin, J.H.; Farha, O.K. Environmentally Benign Biosynthesis of Hierarchical MOFBacterial Cellulose Composite Sponge for Nerve Agent Protection. Angew. Chem. 2022, 61, e202202207. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Hao, X.; Zhang, L.; Du, M.; Li, M.; Zhao, Y.; Li, Z.; Hou, L.; Duan, R.; Yang, Y. Solid-state degradation and visual detection of the nerve agent GB by SA@UiO-66-NH2@PAMAM hydrogel. Polym. Chem. 2022, 13, 6205–6212. [Google Scholar] [CrossRef]
- Kalinovskyy, Y.; Wright, A.J.; Hiscock, J.R.; Watts, T.D.; Williams, R.L.; Cooper, N.J.; Main, M.J.; Holder, S.J.; Blight, B.A. Swell and Destroy A Metal–Organic Framework-Containing Polymer Sponge That Immobilizes and Catalytically Degrades Nerve Agents. ACS Appl. Mater. Interfaces 2020, 12, 8634–8641. [Google Scholar] [CrossRef] [PubMed]
- Long, N.H.; Park, H.-w.; Chae, G.-s.; Lee, J.H.; Bae, S.W.; Shin, S. Preparation of Peelable Coating Films with a Metal Organic Framework (UiO-66) and Self-Crosslinkable Polyurethane for the Decomposition of Methyl Paraoxon. Polymers 2019, 11, 1298. [Google Scholar] [CrossRef] [PubMed]
Materials | Amount or Size | Agent Volume | Half-Life | Environment | Mechanism | Refs. |
---|---|---|---|---|---|---|
monolithic UiO-66 xerogel | 25 mg | HD, 2.5 μL | 24.8 min | Liquid-Phase | Catalytic hydrolysis | [105] |
monolithic UiO-66 xerogel; monolithic UiO-66-NH2 xerogel | 20 mg | VX, 0.4 μL | ≤1.5 min | Liquid-Phase | Catalytic hydrolysis | [105] |
monolithic UiO-66-NH2 xerogel | 25 mg 25 mg | HD, 2.5 μL 2-CEES, 2.5 μL | 14.4 min 8.2 min | Liquid-Phase | Catalytic hydrolysis | [105] |
granular UiO-66-NH2 xerogel | 10 mg | 2-CEES, 1 μL | 7.6 min | Liquid-Phase | Catalytic hydrolysis | [103] |
UiO-66-NH2-loaded cellulose sponge | 8.1 mg | DMNP, 4 μL | 9 min | Liquid-Phase | Catalytic hydrolysis | [106] |
UiO-66/Nanocellulose Aerogel | 8 mg | MPO, 2.5 μmol | 0.7 min | Liquid-Phase | Catalytic hydrolysis | [107] |
MOF-808/BPEIH hydrogel | 2.2 mg MOF-808 loading, 6 mol% | DMNP, 4 μL | <1 min | Liquid-Phase | Catalytic hydrolysis | [108] |
MOF-808/BPEIH/fiber | 1 × 1 cm, containing 1.5 μmol MOF-808 | DMNP, 4 μL GD, 3 μL DEMP, 4.2 μL | 1 min <10 min <1 min | Liquid-Phase | Catalytic hydrolysis | [108] |
MOF-808/SiO2 aerogels | 200 mg | DMMP, 4 μL | 5.29 min | Liquid-Phase | Catalytic hydrolysis | [104] |
UiO-66-NH2@ANF aerogels | 20 mg | CEES, 5 μL | 8.15 min | Liquid-Phase | Catalytic hydrolysis | [109] |
UiO-66-NH2@agarose hydrogels | — | DCP, vapors | — | atmospheric | Catalytic hydrolysis | [110] |
UiO-66-AM @PDMAEA@LiCl@PNIPAM aerogel | 60 mg of UiO-66-AM loading, 12 mol% | DMNP, 12.5 μmol | 1.9 h | atmospheric | Catalytic hydrolysis | [111] |
fibrous MOF-808 nanozyme aerogel | 1 mm × 1 mm × 1 mm, containing 1.5 μmol MOF-808 | DMNP, 25 μmol | 1 min | Liquid-Phase | Catalytic hydrolysis | [112] |
MOF-808/bacterial cellulose sponge | 1.5 μmol MOF-808 in composite | DMNP, 25 μmol | <1 min | Liquid-Phase | Catalytic hydrolysis | [113] |
SA@UiO-66-NH2@PAMAM hydrogel | 17.6 mg | DMNP, 4 μL | 7 min | Liquid-Phase | Catalytic hydrolysis | [114] |
MOF-808/HIPE sponge | 3.2 mg MOF-808 loading, 0.68 mol% | VX, 24 µL | <1 h | Liquid-Phase | Catalytic hydrolysis | [115] |
UiO-66/DSPD Composite Films | 1 × 1 × 0.015 cm3 | MPO, 25 μmol | — | Liquid-Phase | Catalytic hydrolysis | [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tao, C.-A. Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels 2023, 9, 815. https://doi.org/10.3390/gels9100815
Zhang Y, Tao C-A. Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels. 2023; 9(10):815. https://doi.org/10.3390/gels9100815
Chicago/Turabian StyleZhang, Ye, and Cheng-An Tao. 2023. "Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review" Gels 9, no. 10: 815. https://doi.org/10.3390/gels9100815
APA StyleZhang, Y., & Tao, C. -A. (2023). Metal–Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels, 9(10), 815. https://doi.org/10.3390/gels9100815