Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of BSA Nanoparticle Gel Matrices
2.1.1. Results of the Factorial Design
2.1.2. pH Measurement
2.2. Raman Spectroscopic Structural Investigation
2.3. Mucoadhesion Studies
2.4. Thermal Gravimetry (TG) Analysis
2.5. Differential Scanning Calorimetric (DSC) Analysis
2.6. Morphological Characterization
2.7. Viscosity Measurement
2.8. Drug Release Studies
3. Conclusions
4. Materials and Methods
4.1. Chemicals
4.2. Optimization of BSA-NGs
4.3. Preparation of BSA-NGs
4.4. Characterization of BSA-NGs
4.4.1. Dynamic Light Scattering Measurements
4.4.2. pH Measurement
4.4.3. Raman Spectroscopy
4.4.4. Mucoadhesive Properties of BSA-NGs
4.4.5. Thermal Gravimetry
4.4.6. Differential Scanning Calorimetry
4.4.7. Scanning Electron Microscope
4.4.8. Viscosity Studies
4.4.9. In Vitro Drug Release Studies
4.4.10. HPLC Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin Nanostructures as Advanced Drug Delivery Systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Karami, K.; Jamshidian, N.; Hajiaghasi, A.; Amirghofran, Z. BSA Nanoparticles as Controlled Release Carriers for Isophethalaldoxime Palladacycle Complex; Synthesis, Characterization,: In Vitro Evaluation, Cytotoxicity and Release Kinetics Analysis. New J. Chem. 2020, 44, 4394–4405. [Google Scholar] [CrossRef]
- Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-Based Nanoparticles as Potential Controlled Release Drug Delivery Systems. J. Control. Release 2012, 157, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef] [PubMed]
- Katona, G.; Balogh, G.T.; Dargó, G.; Gáspár, R.; Márki, Á.; Ducza, E.; Sztojkov-Ivanov, A.; Tömösi, F.; Kecskeméti, G.; Janáky, T.; et al. Development of Meloxicam-Human Serum Albumin Nanoparticles for Nose-to-Brain Delivery via Application of a Quality by Design Approach. Pharmaceutics 2020, 12, 97. [Google Scholar] [CrossRef]
- Katona, G.; Sipos, B.; Budai-Szűcs, M.; Balogh, G.T.; Veszelka, S.; Gróf, I.; Deli, M.A.; Volk, B.; Szabó-Révész, P.; Csóka, I. Development of in Situ Gelling Meloxicam-Human Serum Albumin Nanoparticle Formulation for Nose-to-Brain Application. Pharmaceutics 2021, 13, 646. [Google Scholar] [CrossRef]
- Emad, N.A.; Ahmed, B.; Alhalmi, A.; Alzobaidi, N.; Al-Kubati, S.S. Recent Progress in Nanocarriers for Direct Nose to Brain Drug Delivery. J. Drug Deliv. Sci. Technol. 2021, 64, 1–11. [Google Scholar] [CrossRef]
- Ong, J.; Zhao, J.; Justin, A.W.; Markaki, A.E. Albumin-Based Hydrogels for Regenerative Engineering and Cell Transplantation. Biotechnol. Bioeng. 2019, 116, 3457–3468. [Google Scholar] [CrossRef]
- Ong, J.; Zhao, J.; Levy, G.K.; Macdonald, J.; Justin, A.W.; Markaki, A.E. Functionalisation of a Heat-Derived and Bio-Inert Albumin Hydrogel with Extracellular Matrix by Air Plasma Treatment. Sci. Rep. 2020, 10, 12429. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Dastmalchi, S.; Davaran, S. A Simple Improved Desolvation Method for the Rapid Preparation of Albumin Nanoparticles. Int. J. Biol. Macromol. 2016, 91, 703–709. [Google Scholar] [CrossRef]
- Kianfar, E. Protein Nanoparticles in Drug Delivery: Animal Protein, Plant Proteins and Protein Cages, Albumin Nanoparticles. J. Nanobiotechnol. 2021, 19, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Hornok, V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers 2021, 13, 3759. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, A.; Azoia, N.G.; Gomes, A.C.; Cavaco-Paulo, A. Albumin-Based Nanodevices as Drug Carriers. Curr. Pharm. Des. 2016, 22, 1371–1390. [Google Scholar] [CrossRef] [PubMed]
- Stawicki, B.; Schacher, T.; Cho, H. Nanogels as a versatile drug delivery system for brain cancer. Gels 2021, 7, 63. [Google Scholar] [CrossRef]
- Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; Von Briesen, H.; Schubert, D. Optimization of the Preparation Process for Human Serum Albumin (HSA) Nanoparticles. Int. J. Pharm. 2003, 257, 169–180. [Google Scholar] [CrossRef]
- Amighi, F.; Emam-Djomeh, Z.; Labbafi-Mazraeh-Shahi, M. Effect of Different Cross-Linking Agents on the Preparation of Bovine Serum Albumin Nanoparticles. J. Iran. Chem. Soc. 2020, 17, 1223–1235. [Google Scholar] [CrossRef]
- Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation Process and Surface Characterisation of Protein Nanoparticles. Int. J. Pharm. 2000, 194, 91–102. [Google Scholar] [CrossRef]
- Arabi, S.H.; Haselberger, D.; Hinderberger, D. The Effect of Ethanol on Gelation, Nanoscopic, and Macroscopic Properties of Serum Albumin Hydrogels. Molecules 2020, 25, 1927. [Google Scholar] [CrossRef]
- Tarhini, M.; Benlyamani, I.; Hamdani, S.; Agusti, G.; Fessi, H.; Greige-Gerges, H.; Bentaher, A.; Elaissari, A. Protein-Based Nanoparticle Preparation via Nanoprecipitation Method. Materials 2018, 11, 394. [Google Scholar] [CrossRef]
- Bastier, P.L.; Lechot, A.; Bordenave, L.; Durand, M.; De Gabory, L. Nasal Irrigation: From Empiricism to Evidence-Based Medicine. A Review. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2015, 132, 281–285. [Google Scholar] [CrossRef]
- England, R.J.A.; Homer, J.J.; Knight, L.C.; Ell, S.R. Nasal PH Measurement: A Reliable and Repeatable Parameter. Clin. Otolaryngol. Allied Sci. 1999, 24, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Washington, N.; Steele, R.J.C.; Jackson, S.J.; Bush, D.; Mason, J.; Gill, D.A.; Pitt, K.; Rawlins, D.A. Determination of Baseline Human Nasal PH and the Effect of Intranasally Administered Buffers. Int. J. Pharm. 2000, 198, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Kim, J.H.; Kim, S.W.; Kim, S.W.; Jin, K.S.; Cho, J.H.; Kang, J.M.; Park, S.Y. Nasal PH in Patients with Chronic Rhinosinusitis before and after Endoscopic Sinus Surgery. Am. J. Otolaryngol.-Head Neck Med. Surg. 2013, 34, 505–507. [Google Scholar] [CrossRef] [PubMed]
- David, C.; Foley, S.; Mavon, C.; Enescu, M. Reductive Unfolding of Serum Albumins Uncovered by Raman Spectroscopy. Biopolymers 2008, 89, 623–634. [Google Scholar] [CrossRef]
- Emin, A.; Hushur, A.; Mamtimin, T. Raman Study of Mixed Solutions of Methanol and Ethanol. AIP Adv. 2020, 10, 065330. [Google Scholar] [CrossRef]
- Kakati, N.; Parashar, C.K.; Thakur, S.; Deshmukh, O.S.; Bandyopadhyay, D. Microrheology of Mucin-Albumin Assembly Using Diffusing Wave Spectroscopy. ACS Appl. Bio Mater. 2022, 5, 4118–4127. [Google Scholar] [CrossRef]
- del Castillo-Santaella, T.; Aguilera-Garrido, A.; Galisteo-González, F.; Gálvez-Ruiz, M.J.; Molina-Bolívar, J.A.; Maldonado-Valderrama, J. Hyaluronic Acid and Human/Bovine Serum Albumin Shelled Nanocapsules: Interaction with Mucins and in Vitro Digestibility of Interfacial Films. Food Chem. 2022, 383, 132330. [Google Scholar] [CrossRef]
- Pham, Q.D.; Nöjd, S.; Edman, M.; Lindell, K.; Topgaard, D.; Wahlgren, M. Mucoadhesion: Mucin-Polymer Molecular Interactions. Int. J. Pharm. 2021, 610, 121245. [Google Scholar] [CrossRef]
- Guerini, M.; Condrò, G.; Perugini, P. Evaluation of the Mucoadhesive Properties of Chitosan-Based Microstructured Lipid Carrier (CH-MLC). Pharmaceutics 2022, 14, 170. [Google Scholar] [CrossRef]
- Kumari, K.; Kumar, A.; Manjur, A.T.; Rakshit, S. Bioactives Promiscuity of Mucin: Insight from Multi-Spectroscopic, Thermodynamic, and Molecular Dynamic Simulation Analyses. Langmuir 2023, 39, 4589–4600. [Google Scholar] [CrossRef]
- Guideline, ICH Harmonised Tripartite. Impurities: Guideline for residual solvents Q3C (R5). Curr. Step 2005, 4, 1–25. [Google Scholar]
- Tang, B.; Fang, G.; Gao, Y.; Liu, Y.; Liu, J.; Zou, M.; Cheng, G. Liprosomes loading paclitaxel for brain-targeting delivery by intravenous administration: In vitro characterization and in vivo evaluation. Int. J. Pharm. 2014, 475, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yang, C.; Ouyang, P.; Yin, G.; Huang, Z.; Yao, Y.; Liao, X. The preparation of BSA-PLLA microparticles in a batch supercritical anti-solvent process. Carbohydr. Polym. 2009, 77, 244–249. [Google Scholar] [CrossRef]
- Dawud, H.; Abu Ammar, A. Rapidly dissolving microneedles for the delivery of steroid-loaded nanoparticles intended for the treatment of inflammatory skin diseases. Pharmaceutics 2023, 15, 526. [Google Scholar] [CrossRef]
- Gao, M.; Shen, X.; Mao, S. Factors Influencing Drug Deposition in the Nasal Cavity upon Delivery via Nasal Sprays. J. Pharm. Investig. 2020, 50, 251–259. [Google Scholar] [CrossRef]
- Trenkel, M.; Scherließ, R. Nasal Powder Formulations: In-Vitro Characterisation of the Impact of Powders on Nasal Residence Time and Sensory Effects. Pharmaceutics 2021, 13, 385. [Google Scholar] [CrossRef] [PubMed]
- Furubayashi, T.; Inoue, D.; Kamaguchi, A.; Higashi, Y.; Sakane, T. Influence of Formulation Viscosity on Drug Absorption Following Nasal Application in Rats. Drug Metab. Pharmacokinet. 2007, 22, 206–211. [Google Scholar] [CrossRef]
- Scherließ, R. Nasal Formulations for Drug Administration and Characterization of Nasal Preparations in Drug Delivery. Ther. Deliv. 2020, 11, 183–191. [Google Scholar] [CrossRef]
- Sanaeifar, N.; Mäder, K.; Hinderberger, D. Nanoscopic Characterization of Stearic Acid Release from Bovine Serum Albumin Hydrogels. Macromol. Biosci. 2020, 20, 2000126. [Google Scholar] [CrossRef]
- Devkar, T.B.; Tekade, A.R.; Khandelwal, K.R. Surface Engineered Nanostructured Lipid Carriers for Efficient Nose to Brain Delivery of Ondansetron HCl Using Delonix Regia Gum as a Natural Mucoadhesive Polymer. Colloids Surf. B Biointerfaces 2014, 122, 143–150. [Google Scholar] [CrossRef]
- Sharma, M.; Gupta, N. Mucoadhesive Cationic Bromelain Laden Nanocarriers Restore Patency of Airway Hyperresponsive Remodeling via Nasal Route. Adv. Ther. 2023, 6, 2200302. [Google Scholar] [CrossRef]
- Makled, S.; Nafee, N.; Boraie, N. Nebulized Solid Lipid Nanoparticles for the Potential Treatment of Pulmonary Hypertension via Targeted Delivery of Phosphodiesterase-5-Inhibitor. Int. J. Pharm. 2017, 517, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Dyawanapelly, S.; Koli, U.; Dharamdasani, V.; Jain, R.; Dandekar, P. Improved Mucoadhesion and Cell Uptake of Chitosan and Chitosan Oligosaccharide Surface-Modified Polymer Nanoparticles for Mucosal Delivery of Proteins. Drug Deliv. Transl. Res. 2016, 6, 365–379. [Google Scholar] [CrossRef]
- Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive Chitosan-Coated Solid Lipid Nanoparticles for Better Management of Tuberculosis. Int. J. Pharm. 2018, 536, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Akel, H.; Ismail, R.; Katona, G.; Sabir, F.; Ambrus, R.; Csóka, I. A Comparison Study of Lipid and Polymeric Nanoparticles in the Nasal Delivery of Meloxicam: Formulation, Characterization, and in Vitro Evaluation. Int. J. Pharm. 2021, 604, 1–13. [Google Scholar] [CrossRef]
- Rençber, S.; Karavana, S.Y.; Yılmaz, F.F.; Eraç, B.; Nenni, M.; Özbal, S.; Pekçetin, Ç.; Gurer-Orhan, H.; Hoşgör-Limoncu, M.; Güneri, P.; et al. Development, Characterization, and in Vivo Assessment of Mucoadhesive Nanoparticles Containing Fluconazole for the Local Treatment of Oral Candidiasis. Int. J. Nanomed. 2016, 11, 2641–2653. [Google Scholar] [CrossRef]
- Aguilera-Garrido, A.; Molina-Bolívar, J.A.; Gálvez-Ruiz, M.J.; Galisteo-González, F. Mucoadhesive Properties of Liquid Lipid Nanocapsules Enhanced by Hyaluronic Acid. J. Mol. Liq. 2019, 296, 111965. [Google Scholar] [CrossRef]
- Matricardi, P.; Cencetti, C.; Ria, R.; Alhaique, F.; Coviello, T. Preparation and Characterization of Novel Gellan Gum Hydrogels Suitable for Modified Drug Release. Molecules 2009, 14, 3376–3391. [Google Scholar] [CrossRef]
- Sanz, R.; Clares, B.; Mallandrich, M.; Suñer-Carbó, J.; Montes, M.J.; Calpena, A.C. Development of a Mucoadhesive Delivery System for Control Release of Doxepin with Application in Vaginal Pain Relief Associated with Gynecological Surgery. Int. J. Pharm. 2018, 535, 393–401. [Google Scholar] [CrossRef]
- Sipos, B.; Szabó-Révész, P.; Csóka, I.; Pallagi, E.; Dobó, D.G.; Bélteky, P.; Kónya, Z.; Deák, Á.; Janovák, L.; Katona, G. Quality by Design Based Formulation Study of Meloxicam-Loaded Polymeric Micelles for Intranasal Administration. Pharmaceutics 2020, 12, 697. [Google Scholar] [CrossRef]
Batch | Independent Variables | Z-Average ± SD (nm) | PdI ± SD | ZP ± SD (mV) | Appearance after Gelation | ||
---|---|---|---|---|---|---|---|
BSA 20% w/v (mL) | Et-OH (mL) | PW (mL) | |||||
BSA-NG 1 | 0.5 | 0.6 | 0.1 | 100.63 ± 9.12 | 0.687 ± 0.16 | −32.2 ± 0.64 | Hard gel, turbid |
BSA-NG 2 | 0.5 | 0.9 | 0.9 | 77.55 ± 0.51 | 0.409 ± 0.02 | −29.7 ± 0.40 | High viscosity, bluish |
BSA-NG 3 | 0.5 | 1.2 | 0.5 | 81.81 ± 3.68 | 0.297 ± 0.01 | −33 ± 0.60 | Hard gel, turbid |
BSA-NG 4 | 1.0 | 0.6 | 0.9 | 64.67 ± 2.64 | 0.326 ± 0.01 | −9 ± 0.02 | Liquid, clear |
BSA-NG 5 | 1.0 | 0.9 | 0.5 | 71.51 ± 13.45 | 0.584 ± 0.01 | −19.2 ± 0.37 | Hard gel, turbid |
BSA-NG 6 | 1.0 | 1.2 | 0.1 | 138.6 ± 7.43 | 0.418 ± 0.01 | −29.1 ± 0.35 | Hard gel, turbid |
BSA-NG 7 | 1.5 | 0.6 | 0.5 | 64.35 ± 6.12 | 0.404 ± 0.04 | −10.8 ± 3.44 | Liquid, clear |
BSA-NG 8 | 1.5 | 0.9 | 0.1 | 198.7 ± 3.1 | 0.479 ± 0.01 | −31.8 ± 0.45 | Hard gel, turbid |
BSA-NG 9 | 1.5 | 1.2 | 0.9 | 98.91 ± 5.78 | 0.675 ± 0.01 | −15.6 ± 1.33 | Liquid, clear |
Formulation | Weight Loss (mg) | Weight Loss (%) |
---|---|---|
initial BSA | 0.2507 | 6.67 |
BSA-NG 2 | 0.2515 | 6.69 |
BSA-DXM 2 | 0.2499 | 6.65 |
BSA-NG 4 | 0.2526 | 6.72 |
BSA-DXM 4 | 0.2511 | 6.68 |
BSA-NG 6 | 0.2567 | 6.83 |
BSA-DXM 6 | 0.2548 | 6.79 |
Formulation | Before Freeze-Drying η (Pa.s) ± SD | After Freeze-Drying η (mPa.s) ± SD |
---|---|---|
BSA-DXM 2 | 3.091 ± 0.038 | 2.451 ± 0.034 |
BSA-DXM 4 | 3.442 ± 0.015 | 0.997 ± 0.031 |
BSA-DXM 6 | 4.846 ± 0.199 | 3.396 ± 0.156 |
Factors | Level | ||
---|---|---|---|
−1 | 0 | +1 | |
BSA 20% w/v (mL) | 0.5 | 1.0 | 1.5 |
Ethanol (mL) | 0.6 | 0.9 | 1.2 |
PW (mL) | 0.1 | 0.5 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mardikasari, S.A.; Katona, G.; Sipos, B.; Ambrus, R.; Csóka, I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels 2023, 9, 896. https://doi.org/10.3390/gels9110896
Mardikasari SA, Katona G, Sipos B, Ambrus R, Csóka I. Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels. 2023; 9(11):896. https://doi.org/10.3390/gels9110896
Chicago/Turabian StyleMardikasari, Sandra Aulia, Gábor Katona, Bence Sipos, Rita Ambrus, and Ildikó Csóka. 2023. "Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration" Gels 9, no. 11: 896. https://doi.org/10.3390/gels9110896
APA StyleMardikasari, S. A., Katona, G., Sipos, B., Ambrus, R., & Csóka, I. (2023). Preparation and Optimization of Bovine Serum Albumin Nanoparticles as a Promising Gelling System for Enhanced Nasal Drug Administration. Gels, 9(11), 896. https://doi.org/10.3390/gels9110896