Enhancement of Curcumin’s Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of Oils, Surfactants and Co-Surfactants
2.2. Characterization of Gel and Emulgel
2.2.1. Visual Inspection
2.2.2. Drug Content of Curcumin in Gel and Emulgel
2.2.3. Measurement of pH
2.2.4. Viscosity Measurement
2.2.5. Spreadability
2.2.6. Centrifugation Test
2.2.7. Particle Size, PDI, and Zeta Potential
2.2.8. DSC and FTIR of Gel and Emulgel
DSC of Gel and Emulgel
FTIR Spectra of Gel and Emulgel
2.2.9. In Vitro Drug Release
2.2.10. Kinetic Study
2.3. Stability Studies
2.4. In Vivo Anti-Psoriatic Activity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Screening of Oils, Surfactants, and Co-Surfactants
4.3. Development of Gel
4.4. Development of Curcumin-Loaded Nanoemulsion and Loading into Gel
4.5. Characterization of Gel and Emulgel
4.5.1. Visual Inspection
4.5.2. Drug Content
4.5.3. pH Determination
4.5.4. Viscosity Measurement
4.5.5. Spreadability Determination
4.5.6. Centrifugation Test
4.5.7. Particle Size, PDI, and Zeta Potential
4.5.8. FTIR and DSC of Gel and Emulgel
4.5.9. In Vitro Drug Release Study
4.5.10. Kinetic Study
- Zero-order equation Q1 = Q0 + K0 t;
- First-order equation lnQ1 = lnQ0 × K0 t;
- Higuchi model Q = KH t1/2;
- Korsemeyer–Peppas equation Mt/M∞ = Ktn.
4.6. Stability Studies
4.7. In Vivo Anti-Psoriatic Activity
4.8. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly-Sell, M.; Gudjonsson, J.E. Chapter 1—Overview of Psoriasis. In Lebwohl MGBTT for SP; Wu, J.J., Feldman, S.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–15. [Google Scholar]
- Budhori, A.; Tiwari, A.; Tiwari, V.; Sharma, A.; Kumar, M.; Gautam, G.; Virmani, T.; Kumar, G.; Alhalmi, A.; Noman, O.M.; et al. QbD Design, Formulation, Optimization and Evaluation of Trans-Tympanic Reverse Gelatination Gel of Norfloxacin: Investigating Gene-Gene Interactions to Enhance Therapeutic Efficacy. Gels 2023, 9, 657. [Google Scholar] [CrossRef] [PubMed]
- Lauterbach, A.; Müller-Goymann, C.C. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur. J. Pharm. Biopharm. 2015, 97 Pt A, 152–163. [Google Scholar] [CrossRef]
- Zhao, Y.; Brown, M.B.; Jones, S.A. Pharmaceutical foams: Are they the answer to the dilemma of topical nanoparticles? Nanomed. Nanotechnol. Biol. Med. 2010, 6, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.A.; Patel, N.J.; Patel, R.P. Formulation and evaluation of curcumin gel for topical application. Pharm. Dev. Technol. 2009, 14, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, H.; Kohli, K.; Kumar, V. Nano-transfersomes as a novel carrier for transdermal delivery. Int. J. Pharm. 2013, 454, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Soliman, W.E.; Shehata, T.M.; Mohamed, M.E.; Younis, N.S.; Elsewedy, H.S. Enhancement of Curcumin Anti-Inflammatory Effect via Formulation into Myrrh Oil-Based Nanoemulgel. Polymers 2021, 13, 577. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.; Dev, A.; Das, S.S.; Kim, H.J.; Kumar, A.; Thakur, V.K.; Han, S.S. Curcumin-Loaded Alginate Hydrogels for Cancer Therapy and Wound Healing Applications: A Review. Int. J. Biol. Macromol. 2023, 232, 123283. [Google Scholar] [CrossRef]
- Shen, Y.; Lu, Y.; Jv, M.; Hu, J.; Li, Q.; Tu, J. Enhancing effect of Labrasol on the intestinal absorption of ganciclovir in rats. Drug Dev. Ind. Pharm. 2011, 37, 1415–1421. [Google Scholar] [CrossRef]
- Carson, C.; Riley, T.; Cookson, B. Efficacy and safety of tea tree oil as a topical antimicrobial agent. J. Hosp. Infect. 1998, 40, 175–178. [Google Scholar] [CrossRef]
- Gadadavar, S.; Rutvi; Vagarali, M. Antimicrobial Efficacy of Tea Tree Oil and Peppermint Oil against Periopathogen Porphyromonas Gingivalis. Indian J. Med. Microbiol. 2021, 39, S12. [Google Scholar] [CrossRef]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Paccou, J.; Wendling, D. Current treatment of psoriatic arthritis: Update based on a systematic literature review to establish French Society for Rheumatology (SFR) recommendations for managing spondyloarthritis. Jt. Bone Spine 2015, 82, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Shah, S.; Yadav, H.N.; Ali, J.; Gupta, M.M.; Baboota, S. Quality by design engineered, enhanced anticancer activity of temozolomide and resveratrol coloaded NLC and brain targeting via lactoferrin conjugation in treatment of glioblastoma. Eur. J. Pharm. Biopharm. 2023, 191, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Ali, J.; Baboota, S. Enhanced anti-psoriatic activity of tacrolimus loaded nanoemulsion gel via omega 3—Fatty acid (EPA and DHA) rich oils-fish oil and linseed oil. J. Drug Deliv. Sci. Technol. 2021, 63, 102458. [Google Scholar] [CrossRef]
- Alhalmi, A.; Amin, S.; Khan, Z.; Beg, S.; Al Kamaly, O.; Saleh, A.; Kohli, K. Nanostructured Lipid Carrier-Based Codelivery of Raloxifene and Naringin: Formulation, Optimization, In Vitro, Ex Vivo, In Vivo Assessment, and Acute Toxicity Studies. Pharmaceutics 2022, 14, 1771. [Google Scholar] [CrossRef] [PubMed]
- Et Al, M.M. Effects of hospital service quality on patients satisfaction and behavioural intention of doctors and nurses. Saudi J. Med. Pharm. Sci. 2017, 3, 556–567. [Google Scholar]
- Alam, M.S.; AlGahtani, M.S.; Ahmad, J.; Kohli, K.; Shafiq-Un-Nabi, S.; Warsi, M.H.; Ahmad, M.Z. Formulation design and evaluation of aceclofenac nanogel for topical application. Ther. Deliv. 2020, 11, 767–778. [Google Scholar] [CrossRef]
- Abdallah, M.H.; Elghamry, H.A.; Khalifa, N.E.; Khojali, W.M.A.; Khafagy, E.-S.; Shawky, S.; El-Horany, H.E.-S.; El-Housiny, S. Development and Optimization of Erythromycin Loaded Transethosomes Cinnamon Oil Based Emulgel for Antimicrobial Efficiency. Gels 2023, 9, 137. [Google Scholar] [CrossRef]
- Khullar, R.; Kumar, D.; Seth, N.; Saini, S. Formulation and evaluation of mefenamic acid emulgel for topical delivery. Saudi Pharm. J. 2012, 20, 63–67. [Google Scholar] [CrossRef]
- dos Santos, R.S.; da Silva, J.B.; Rosseto, H.C.; Vecchi, C.F.; Campanholi, K.d.S.S.; Caetano, W.; Bruschi, M.L. Emulgels Containing Propolis and Curcumin: The Effect of Type of Vegetable Oil, Poly(Acrylic Acid) and Bioactive Agent on Physicochemical Stability, Mechanical and Rheological Properties. Gels 2021, 7, 120. [Google Scholar] [CrossRef]
- Arora, R.; Aggarwal, G.; Harikumar, S.L.; Kaur, K. Nanoemulsion Based Hydrogel for Enhanced Transdermal Delivery of Ketoprofen. Adv. Pharm. 2014, 2014, 468456. [Google Scholar] [CrossRef]
- Dantas, M.G.B.; Reis, S.A.G.B.; Damasceno, C.M.D.; Rolim, L.; Rolim-Neto, P.J.; Carvalho, F.O.; Quintans-Junior, L.; da Silva Almeida, J.R.G. Development and Evaluation of Stability of a Gel Formulation Containing the Monoterpene Borneol. Sci. World J. 2016, 2016, 7394685. [Google Scholar] [CrossRef] [PubMed]
- Burki, I.K.; Khan, M.K.; Khan, B.A.; Uzair, B.; Braga, V.A.; Jamil, Q.A. Formulation Development, Characterization, and Evaluation of a Novel Dexibuprofen-Capsaicin Skin Emulgel with Improved In Vivo Anti-inflammatory and Analgesic Effects. AAPS PharmSciTech 2020, 21, 211. [Google Scholar] [CrossRef]
- Agrawal, M.; Saraf, S.; Pradhan, M.; Patel, R.J.; Singhvi, G.; Ajazuddin; Alexander, A. Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design. Biomed. Pharmacother. 2021, 141, 111919. [Google Scholar] [CrossRef] [PubMed]
- Nikumbh, K.V.; Sevankar, S.G.; Patil, M.P. Formulation development, in vitro and in vivo evaluation of microemulsion-based gel loaded with ketoprofen. Drug Deliv. 2015, 22, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [Google Scholar] [CrossRef]
- Ahalwat, S.; Bhatt, D.C.; Rohilla, S.; Jogpal, V.; Sharma, K.; Virmani, T.; Kumar, G.; Alhalmi, A.; Alqahtani, A.S.; Noman, O.M.; et al. Mannose-Functionalized Isoniazid-Loaded Nanostructured Lipid Carriers for Pulmonary Delivery: In Vitro Prospects and In Vivo Therapeutic Efficacy Assessment. Pharmaceuticals 2023, 16, 1108. [Google Scholar] [CrossRef]
- Alam, M.S.; Ali, M.S.; Alam, M.I.; Anwer, T.; Safhi, M.M.A. Stability Testing of Beclomethasone Dipropionate Nanoemulsion. Trop. J. Pharm. Res. 2015, 14, 15. [Google Scholar] [CrossRef]
Sr No. | Characteristics | Curcumin-Loaded Gel | Curcumin-Loaded Emulgel |
---|---|---|---|
1 | Color/homogeneity | Pale-yellow/homogenous | Yellow/homogenous |
2 | Odor | Pungent | Tea tree oil-like |
3 | Consistency | Good | Good |
S No. | Formulation | Drug Content in Gel | Drug Content in Emulgel |
---|---|---|---|
1 | F1 | 84.2% | 89.2% |
2 | F2 | 72.7% | 96.7% |
3 | F3 | 68% | 87.4% |
S. No. | Formulation | Viscosity (Cp) | Spreadability | Globule Size | PDI | Zeta Potential |
---|---|---|---|---|---|---|
1. | Gel | 56,200 ± 1725 | 1.986 ± 1.15 | 1064.0 nm | 0.815 | −24.7 V |
2. | Emulgel | 92,200 ± 943 | 2.896 ± 1.09 | 650.2 nm | 0.301 | −10.4 V |
Properties | Temperature | Curcumin-Loaded Gel | Curcumin-Loaded Emulgel |
---|---|---|---|
Color/homogeneity | 4 °C | Pale-Yellow/homogenous | Yellow/homogenous |
25 °C | Pale-Yellow/homogenous | Yellow/homogenous | |
pH | 4 °C | 5.4 ± 0.2 | 6.3 ± 0.4 |
25 °C | 5.9 ± 0.3 | 6.2 ± 0.2 | |
Viscosity(cp) | 4 °C | 54,250 ± 830 | 93,148 ± 764 |
25 °C | 51,345 ± 1654 | 91,126 ± 1124 | |
Spreadability(mm) | 4 °C | 1.554 ± 1.26 | 2.453 ±1.07 |
25 °C | 1.212 ± 1.15 | 2.234 ±1.02 | |
Centrifugation test | 4 °C | Phase separation not observed | Phase separation not observed |
25 °C | Phase separation not observed | Phase separation not observed | |
Drug content | 4 °C | 82.32% | 90.34% |
25 °C | 80.12% | 92.63% |
Constituents | F1 | F2 | F3 |
---|---|---|---|
Drug (mg) | 100 | 100 | 100 |
NaCMC (gm) | 1 | 0.5 | 1.5 |
Ethanol (mL) | 2 | 2 | 2 |
Water (mL) | Qs. | Qs. | Qs. |
Constituents | F1 | F2 | F3 |
---|---|---|---|
Drug (mg) | 100 | 100 | 100 |
NaCMC (gm) | 0.5 | 1 | 2 |
Tea tree oil | 2.5 | 5 | 1.5 |
Ethanol | 2 | 2 | 2 |
Propylene glycol | 1.5 | 2 | 2.5 |
Tween 80 | 0.5 | 2 | 0.5 |
Water | Qs. | Qs. | Qs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reena, K.; Mittal, S.; Faizan, M.; Jahan, I.; Rahman, Y.; Khan, R.; Singh, L.; Alhalmi, A.; Noman, O.M.; Alahdab, A. Enhancement of Curcumin’s Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel. Gels 2023, 9, 973. https://doi.org/10.3390/gels9120973
Reena K, Mittal S, Faizan M, Jahan I, Rahman Y, Khan R, Singh L, Alhalmi A, Noman OM, Alahdab A. Enhancement of Curcumin’s Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel. Gels. 2023; 9(12):973. https://doi.org/10.3390/gels9120973
Chicago/Turabian StyleReena, Km, Saurabh Mittal, Mohammad Faizan, Iram Jahan, Yasir Rahman, Rahmuddin Khan, Lalit Singh, Abdulsalam Alhalmi, Omar M. Noman, and Ahmad Alahdab. 2023. "Enhancement of Curcumin’s Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel" Gels 9, no. 12: 973. https://doi.org/10.3390/gels9120973
APA StyleReena, K., Mittal, S., Faizan, M., Jahan, I., Rahman, Y., Khan, R., Singh, L., Alhalmi, A., Noman, O. M., & Alahdab, A. (2023). Enhancement of Curcumin’s Anti-Psoriatic Efficacy via Formulation into Tea Tree Oil-Based Emulgel. Gels, 9(12), 973. https://doi.org/10.3390/gels9120973