Textural and Rheological Properties of Sliceable Ketchup
Abstract
:1. Introduction
2. Results and Discussion
2.1. Viscosity
2.2. Physical Stability
2.3. Color Properties
2.4. Texture Analysis
2.5. Rheological Analysis
2.5.1. Flow Behavior
2.5.2. Viscoelastic Properties
2.6. Particle Size Distribution
2.7. Microscopic Structure
3. Conclusions
4. Materials and Methods
4.1. Sample Preparation
4.2. Viscosity
4.3. Physical Stability
4.4. Colorimetric Analysis
4.5. Texture Analysis
4.6. Viscoelastic Properties
4.7. Particle Size Distribution Test
4.8. Microstructure
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martín-Martín, S.; Fernández-Ruiz, V.; Sanchez-Mata, M.C.; Cámara, M. Young consumer’s preference response to ketchup products. Acta Hortic. 2015, 339–344. [Google Scholar] [CrossRef]
- Sharoba, A.; Senge, B.; El-Mansy, H.; Bahlol, H.E.; Blochwitz, R. Chemical, sensory and rheological properties of some commercial German and Egyptian tomato ketchups. Eur. Food Res. Technol. 2005, 220, 142–151. [Google Scholar] [CrossRef]
- Koocheki, A.; Ghandi, A.; Razavi, S.M.; Mortazavi, S.A.; Vasiljevic, T. The rheological properties of ketchup as a function of different hydrocolloids and temperature. Int. J. Food Sci. Technol. 2009, 44, 596–602. [Google Scholar] [CrossRef]
- Porretta, S. Analytical profiling of ketchup. J. Sci. Food Agric. 1991, 57, 293–301. [Google Scholar] [CrossRef]
- Şahin, H.; Özdemir, F. Effect of some hydrocolloids on the serum separation of different formulated ketchups. J. Food Eng. 2007, 81, 437–446. [Google Scholar] [CrossRef]
- Razi, S.M.; Motamedzadegan, A.; Matia-Merino, L.; Shahidi, S.-A.; Rashidinejad, A. The effect of pH and high-pressure processing (HPP) on the rheological properties of egg white albumin and basil seed gum mixtures. Food Hydrocoll. 2019, 94, 399–410. [Google Scholar] [CrossRef]
- Phillips, G.O.; Williams, P.A. Handbook of Hydrocolloids; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Mert, B. Using high pressure microfluidization to improve physical properties and lycopene content of ketchup type products. J. Food Eng. 2012, 109, 579–587. [Google Scholar] [CrossRef]
- Panovska, Z.; Štern, P.; Vachova, A.; Lukešová, D.; Pokorný, J. Textural and flavour characteristics of commercial tomato ketchups. Czech J. Food Sci. 2009, 27, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Alam, K.; Ahmed, M.; Akter, S.; Islam, N.; Eun, J.-B. Effect of carboxymethylcellulose and starch as thickening agents on the quality of tomato ketchup. Pak. J. Nutr. 2009, 8, 1144–1149. [Google Scholar]
- Gujral, H.S.; Sharma, A.; Singh, N. Effect of hydrocolloids, storage temperature, and duration on the consistency of tomato ketchup. Int. J. Food Prop. 2002, 5, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.R.; Rafe, A.; Yeganehzad, S. Structure-rheology relationships of composite gels: Alginate and Basil seed gum/guar gum. Carbohydr. Polym. 2020, 232, 115809. [Google Scholar] [CrossRef]
- Mousavi, S.M.R.; Rafe, A.; Yeganehzad, S. Textural, mechanical, and microstructural properties of restructured pimiento alginate-guar gels. J. Texture Stud. 2019, 50, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Nawab, A.; Lutfi, Z.; Haider, S.Z. Effect of non-starch polysaccharides on the pasting, gel, and gelation properties of taro (colocasia esculenta) starch. Starch-Stärke 2021, 73, 2000063. [Google Scholar] [CrossRef]
- Soleimani-Rambod, A.; Zomorodi, S.; Naghizadeh Raeisi, S.; Khosrowshahi Asl, A.; Shahidi, S.-A. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.; Day, D.; Langdon, M.; Phillips, G.; Nishinari, K. Synergistic interaction of xanthan gum with glucomannans and galactomannans. Food Hydrocoll. 1991, 4, 489–493. [Google Scholar] [CrossRef]
- Yang, X.; Li, A.; Li, D.; Li, X.; Li, P.; Sun, L.; Guo, Y. Improved physical properties of konjac glucomannan gels by co-incubating composite konjac glucomannan/xanthan systems under alkaline conditions. Food Hydrocoll. 2020, 106, 105870. [Google Scholar] [CrossRef]
- Yang, X.; Gong, T.; Li, D.; Li, A.; Sun, L.; Guo, Y. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan. Carbohydr. Polym. 2019, 226, 115278. [Google Scholar] [CrossRef]
- Renou, F.; Petibon, O.; Malhiac, C.; Grisel, M. Effect of xanthan structure on its interaction with locust bean gum: Toward prediction of rheological properties. Food Hydrocoll. 2013, 32, 331–340. [Google Scholar] [CrossRef]
- Fan, J.; Wang, K.; Liu, M.; He, Z. In vitro evaluations of konjac glucomannan and xanthan gum mixture as the sustained release material of matrix tablet. Carbohydr. Polym. 2008, 73, 241–247. [Google Scholar] [CrossRef]
- Impaprasert, R.; Piyarat, S.; Sophontanakij, N.; Sakulnate, N.; Paengkanya, S.; Borompichaichartkul, C.; Srzednicki, G. Rehydration and textural properties of dried konjac noodles: Effect of alkaline and some gelling agents. Horticulturae 2016, 3, 20. [Google Scholar] [CrossRef]
- Worrasinchai, S.; Suphantharika, M.; Pinjai, S.; Jamnong, P. β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 2006, 20, 68–78. [Google Scholar] [CrossRef]
- Yang, X.; Gong, T.; Lu, Y.-H.; Li, A.; Sun, L.; Guo, Y. Compatibility of sodium alginate and konjac glucomannan and their applications in fabricating low-fat mayonnaise-like emulsion gels. Carbohydr. Polym. 2020, 229, 115468. [Google Scholar] [CrossRef]
- Mirzaei, M.; Alimi, M.; Shokoohi, S.; Golchoobi, L. Synergistic interactions between konjac-mannan and xanthan/tragacanth gums in tomato ketchup: Physical, rheological, and textural properties. J. Texture Stud. 2018, 49, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Morris, E.R.; Cutler, A.; Ross-Murphy, S.; Rees, D.; Price, J. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr. Polym. 1981, 1, 5–21. [Google Scholar] [CrossRef]
- Stoforos, N.I.G.; Reid, D.A.S. Factors influencing serum separation of tomato ketchup. J. Food Sci. 1992, 57, 707–713. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ye, J.; Yang, Y.; Huang, Y.; Zhang, X.; Xiao, M. Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. Polymers 2020, 12, 121. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, A.; Khandan, M.S.K.; Ardakani, S.A.Y. The effect of persian gums and tragacanth on texture and sensory characteristics of non-gluten cakes. J. Nutr. Food Secur. 2017, 2, 221–230. [Google Scholar]
- Wang, Z.F.; Xu, T.; Wang, C.Y.; Deng, N. Effect of combination of three texture-improving ingredients on textural properties of emulsified sausage-containing salted egg white. Food Sci. Nutr. 2018, 6, 1387–1393. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [Green Version]
- Bayod, E.; Willers, E.P.; Tornberg, E. Rheological and structural characterization of tomato paste and its influence on the quality of ketchup. LWT-Food Sci. Technol. 2008, 41, 1289–1300. [Google Scholar] [CrossRef]
- Giavasis, I.; Harvey, L.M.; McNeil, B. Gellan gum. Crit. Rev. Biotechnol. 2000, 20, 177–211. [Google Scholar] [CrossRef]
- Rani, U.; Bains, G. Flow behaviour of tomato ketchups. J. Texture Stud. 1987, 18, 125–135. [Google Scholar] [CrossRef]
- Tanglertpaibul, T.; Rao, M. Intrinsic viscosity of tomato serum as affected by methods of determination and methods of processing concentrates. J. Food Sci. 1987, 52, 1642–1645. [Google Scholar] [CrossRef]
- El Batal, H.; Hasib, A.; Ouatmane, A.; Jaouad, A.; Naïmi, M. Rheology and influence factor of Locust Bean Gum solution. Rev. Génie Ind. 2012, 8, 55–62. [Google Scholar]
- Khademi, F.; Raeisi, S.N.; Younesi, M.; Motamedzadegan, A.; Rabiei, K.; Shojaei, M.; Rokni, H.; Falsafi, M. Effect of probiotic bacteria on physicochemical, microbiological, textural, sensory properties and fatty acid profile of sour cream. Food Chem. Toxicol. 2022, 166, 113244. [Google Scholar] [CrossRef]
- Mao, C.-F.; Klinthong, W.; Zeng, Y.-C.; Chen, C.-H. On the interaction between konjac glucomannan and xanthan in mixed gels: An analysis based on the cascade model. Carbohydr. Polym. 2012, 89, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Sandolo, C.; Bulone, D.; Mangione, M.R.; Margheritelli, S.; Di Meo, C.; Alhaique, F.; Matricardi, P.; Coviello, T. Synergistic interaction of Locust Bean Gum and Xanthan investigated by rheology and light scattering. Carbohydr. Polym. 2010, 82, 733–741. [Google Scholar] [CrossRef]
- Yılmaz, M.T.; Karaman, S.; Cankurt, H.; Kayacier, A.; Sagdic, O. Steady and dynamic oscillatory shear rheological properties of ketchup–processed cheese mixtures: Effect of temperature and concentration. J. Food Eng. 2011, 103, 197–210. [Google Scholar] [CrossRef]
- Varela, P.; Gambaro, A.; Giménez, A.; Duran, I.; Lema, P. Sensory and instrumental texture measures on ketchup made with different thickeners. J. Texture Stud. 2003, 34, 317–330. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Darabi, R.; Karimi, F.; Karaman, C.; Shahidi, S.A.; Zare, N.; Baghayeri, M.; Fu, L.; Rostamnia, S.; Rouhi, J. State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review. Environ. Res. 2023, 222, 115338. [Google Scholar] [CrossRef]
- Shahidi, S.-A. Effect of solvent type on ultrasound-assisted extraction of antioxidant compounds from Ficaria kochii: Optimization by response surface methodology. Food Chem. Toxicol. 2022, 163, 112981. [Google Scholar] [CrossRef] [PubMed]
- Tako, M. Synergistic interaction between xanthan and konjac glucomannan in aqueous media. Biosci. Biotechnol. Biochem. 1992, 56, 1188–1192. [Google Scholar] [CrossRef]
- Alvarez-Manceñido, F.; Landin, M.; Lacik, I.; Martínez-Pacheco, R. Konjac glucomannan and konjac glucomannan/xanthan gum mixtures as excipients for controlled drug delivery systems. Diffusion of small drugs. Int. J. Pharm. 2008, 349, 11–18. [Google Scholar] [CrossRef]
- Copetti, G.; Grassi, M.; Lapasin, R.; Pricl, S. Synergistic gelation of xanthan gum with locust bean gum: A rheological investigation. Glycoconj. J. 1997, 14, 951–961. [Google Scholar] [CrossRef]
- Kurt, A.; Toker, O.S.; Tornuk, F. Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. Int. J. Biol. Macromol. 2017, 102, 1035–1044. [Google Scholar] [CrossRef]
- Porretta, S.; Birzi, A.; Ghizzoni, C.; Vicini, E. Effects of ultra-high hydrostatic pressure treatments on the quality of tomato juice. Food Chem. 1995, 52, 35–41. [Google Scholar] [CrossRef]
- Wang, C.; Xu, M.; Lv, W.-P.; Qiu, P.; Gong, Y.-Y.; Li, D.-S. Study on rheological behavior of konjac glucomannan. Phys. Procedia 2012, 33, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.R.; Nishinari, K.; Rinaudo, M. Gelation of gellan—A review. Food Hydrocoll. 2012, 28, 373–411. [Google Scholar] [CrossRef]
- Dea, I.C.M.; Clark, A.H.; McCleary, B.V. Effect of galactose-substitution-patterns on the interaction properties of galactomannas. Carbohydr. Res. 1986, 147, 275–294. [Google Scholar] [CrossRef]
- Patole, S.; Cheng, L.; Yang, Z. Impact of incorporations of various polysaccharides on rheological and microstructural characteristics of heat-induced quinoa protein isolate gels. Food Biophys. 2022, 17, 314–323. [Google Scholar] [CrossRef]
- Tipvarakarnkoon, T.; Senge, B. Rheological behaviour of gum solutions and their interactions after mixing. Annu. Trans. Nord. Rheol. Soc. 2008, 16, 73–80. [Google Scholar]
- Lorenzo, G.; Zaritzky, N.; Califano, A. Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int. 2008, 41, 487–494. [Google Scholar] [CrossRef]
- Higiro, J.; Herald, T.J.; Alavi, S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res. Int. 2006, 39, 165–175. [Google Scholar] [CrossRef]
- Golchoobi, L.; Alimi, M.; Shokoohi, S.; Yousefi, H. Interaction between nanofibrillated cellulose with guar gum and carboxy methyl cellulose in low-fat mayonnaise. J. Texture Stud. 2016, 47, 403–412. [Google Scholar] [CrossRef]
- Juszczak, L.; Oczadły, Z.; Gałkowska, D. Effect of modified starches on rheological properties of ketchup. Food Bioprocess Technol. 2013, 6, 1251–1260. [Google Scholar] [CrossRef] [Green Version]
- Karimi, F.; Hamidian, Y.; Behrouzifar, F.; Mostafazadeh, R.; Ghorbani-HasanSaraei, A.; Alizadeh, M.; Mortazavi, S.-M.; Janbazi, M.; Asrami, P.N. An applicable method for extraction of whole seeds protein and its determination through Bradford’s method. Food Chem. Toxicol. 2022, 164, 113053. [Google Scholar] [CrossRef]
Samples | Viscosity (mPa·s) |
---|---|
K1 | 5850 ± 14.1 f |
K2 | 6150 ± 10.61 c |
K3 | 5580 ± 1.41 h |
K4 | 6090 ± 0.71 d |
K5 | 3620 ± 7.78 q |
K6 | 4220 ± 4.95 o |
K7 | 4720 ± 3.54 l |
K8 | 5750 ± 3.54 g |
K9 | 4830 ± 2.12 k |
K10 | 4360 ± 14.1 m |
K11 | 4010 ± 0.71 p |
K12 | 4850 ± 7.07 k |
K13 | 6450 ± 2.83 a |
K14 | 6270 ± 5.66 b |
K15 | 4300 ± 0.71 n |
K16 | 5330 ± 0.71 j |
K17 | 5360 ± 9.19 ij |
K18 | 5940 ± 14.1 e |
K19 | 5390 ± 2.12 i |
K20 | 4360 ± 12.02 m |
Samples | Syneresis (%) |
---|---|
K1 | 3.59 ± 0.1131 i |
K2 | 1.348 ± 0.0297 kl |
K3 | 1.491 ± 0.0085 k |
K4 | 1.445 ± 0.0226 k |
K5 | 2.843 ± 0.0226 j |
K6 | 0.699 ± 0.0297 p |
K7 | 0.997 ± 0.0113 no |
K8 | 22.022 ± 0.0170 b |
K9 | 17.532 ± 0.0071 d |
K10 | 23.6 ± 0.0849 a |
K11 | 12.007 ± 0.0113 g |
K12 | 4.139 ± 0.0184 h |
K13 | 1.396 ± 0.0156 k |
K14 | 0.6979 ± 0.0161 p |
K15 | 1.144 ± 0.0127 mn |
K16 | 0.8487 ± 0.0137 op |
K17 | 21.265 ± 0.0127 c |
K18 | 16.758 ± 0.0127 e |
K19 | 1.197± 0.0156 m |
K20 | 12.35 ± 0.0566 f |
Samples | L* | a* | b* |
---|---|---|---|
K1 | 25.38 ± 0.0283 efg | 31.2 ± 0.0778 bcde | 26.07 ± 0.0141 cde |
K2 | 25.95 ± 0.240 bc | 29.52 ± 0.0495 h | 24.18 ± 0.0990 j |
K3 | 24.52 ± 0.0495 j | 29.76 ± 0.1410 gh | 25.32 ± 0.1131 gh |
K4 | 24.08 ± 0.0919 k | 29.26 ± 0.0849 hi | 23.15 ± 0.1560 l |
K5 | 24.00 ± 0.0283 k | 29.44 ± 0.0707 h | 27.72 ± 0.0990 a |
K6 | 25.18 ± 0.0141 fgh | 28.64 ± 0.1980 ij | 26.8 ± 0.1560 b |
K7 | 23.94 ± 0.0212 k | 28.09 ± 0.1980 j | 25.99 ± 0.2120 cdef |
K8 | 25.13 ± 0.0354 gh | 32.02 ± 0.1410 a | 26.43 ± 0.1560 bc |
K9 | 25.6 ± 0.0283 de | 31.36 ± 0.1700 bcd | 25.59 ± 0.1700 defgh |
K10 | 25.84 ± 0.0424 cd | 31.66 ± 0.2970 ab | 26.03 ± 0.0283 cdef |
K11 | 25.12 ± 0.0000 gh | 31.44 ± 0.1840 abc | 25.75 ± 0.0566 defg |
K12 | 25.44 ± 0.0283 ef | 31.4 ± 0.0424 abcd | 25.51 ± 0.0566 efgh |
K13 | 25.03 ± 0.0283 hi | 30.83 ± 0.0990 cdef | 24.5 ± 0.0566 ij |
K14 | 27.57 ± 0.0778 a | 31.56 ± 0.2400 ab | 26.13 ± 0.1273 cd |
K15 | 24.61 ± 0.0849 j | 30.77 ± 0.3680 def | 25.46 ± 0.0849 fgh |
K16 | 26.2 ± 0.0919 b | 30.51 ± 0.1131 f | 23.5 ± 0.0141 kl |
K17 | 24.81 ± 0.0247 ij | 30.19 ± 0.0141 fg | 24.19 ± 0.0990 j |
K18 | 25.12 ± 0.0424 gh | 30.7 ± 0.0283 ef | 24.06 ± 0.0849 jk |
K19 | 25.37 ± 0.0566 efg | 30.84 ± 0.1131 cdef | 25.07 ± 0.1980 hi |
K20 | 24.72 ± 0.0424 j | 31.7 ± 0.0849 ab | 25.29 ± 0.3680 gh |
Samples | Hardness (N) | Adhesiveness (mJ) | Cohesiveness (--) | Springiness (mm) | Gumminess (N) | Chewiness (mJ) |
---|---|---|---|---|---|---|
K1 | 4.685 ± 0.0156 de | 5.79 ± 0.2120 a | 0.6 ± 0.0707 abcd | 3.43 ± 0.0283 a | 2.77 ± 0.1700 d | 9.695 ± 0.0622 d |
K2 | 6.139 ± 0.0198 c | 2.48 ± 0.1131 ij | 0.565 ± 0.0198 abcd | 3.1 ± 0.2120 abc | 2.68 ± 0.0849 d | 7.86 ± 0.1700 e |
K3 | 8.89 ± 0.1840 a | 2.535 ± 0.0156 i | 0.535 ± 0.0184 bcd | 3.19 ± 0.1840 ab | 4.656 ± 0.1500 a | 14.92 ± 0.0424 a |
K4 | 3.786 ± 0.0255 e | 2.735 ± 0.1510 hi | 0.49 ± 0.0707 cd | 2.78 ± 0.1560 abcd | 1.809 ± 0.0198 e | 5.035 ± 0.1061 g |
K5 | 2.118 ± 0.0127 f | 3.02 ± 0.1273 gh | 0.655 ± 0.0297 abc | 3.105 ± 0.0071 abc | 1.382 ± 0.0085 f | 4.315 ± 0.1358 h |
K6 | 1.316 ± 0.0113 f | 2.1 ± 0.0424 j | 0.655 ± 0.0099 abc | 2.83 ± 0.0990 abcd | 0.864 ± 0.0042 g | 2.44 ± 0.0424 ij |
K7 | 6.274 ± 0.0042 c | 3.3 ± 0.1700 fg | 0.54 ± 0.0566 abcd | 3.05 ± 0.0566 abc | 3.358 ± 0.0156 c | 10.26 ± 0.0566 c |
K8 | 1.267 ± 0.0184 f | 3.355 ± 0.0170 efg | 0.66 ± 0.0707 abc | 2.66 ± 0.0283 bcd | 0.846 ± 0.0071 g | 2.34 ± 0.0990 ijk |
K9 | 1.086 ± 0.0354 f | 3.75 ± 0.1273 de | 0.725 ± 0.0085 ab | 2.77 ± 0.0990 abcd | 0.7925 ± 0.0049 g | 2.275 ± 0.0156 jk |
K10 | 1.431 ± 0.0042 f | 3.425 ± 0.0170 efg | 0.555 ± 0.0297 abcd | 2.365 ± 0.0099 cde | 0.796 ± 0.0028 g | 2.05 ± 0.0566 k |
K11 | 1.184 ± 0.0113 f | 3.385 ± 0.0325 efg | 0.71 ± 0.0283 ab | 2.735 ± 0.5150 abcd | 0.839 ± 0.0028 g | 2.31 ± 0.0141 jk |
K12 | 1.209 ± 0.0127 f | 3.67 ± 0.1131 def | 0.74 ± 0.0849 a | 2.9 ± 0.0707 abcd | 0.899 ± 0.0170 g | 2.65 ± 0.0990 i |
K13 | 7.644 ± 0.0453 ab | 3.37 ± 0.0283 efg | 0.555 ± 0.0325 abcd | 2.99 ± 0.0849 abcd | 4.174 ± 0.0099 b | 12.53 ± 0.0990 b |
K14 | 1.608 ± 0.0141 f | 2.565 ± 0.0170 i | 0.57 ± 0.0990 abcd | 2.46 ± 0.0707 bcde | 0.922 ± 0.0071 g | 2.305 ± 0.01131 jk |
K15 | 5.464 ± 1.4200 cd | 3.255 ± 0.0382 g | 0.48 ± 0.0566 cd | 2.82 ± 0.0566 abcd | 2.6075 ± 0.0530 d | 7.355 ± 0.01131 f |
K16 | 1.87 ± 0.0849 cd | 4.205 ± 0.1216 bc | 0.415 ± 0.0297 d | 1.91 ± 0.0424 e | 0.787 ± 0.0311 g | 1.545 ± 0.0269 l |
K17 | 1.25 ± 0.0566 f | 3.67 ± 0.0849 def | 0.555 ± 0.0085 abcd | 2.25 ± 0.3390 de | 0.694 ± 0.0170 gh | 1.59 ± 0.1700 l |
K18 | 1.596 ± 0.0042 f | 4.03 ± 0.0566 cd | 0.535 ± 0.0071 bcd | 2.29 ± 0.3680 de | 0.864 ± 0.0156 g | 2.15 ± 0.0566 jk |
K19 | 6.435 ± 0.0127 bc | 4.59 ± 0.1131 b | 0.44 ± 0.0424 d | 2.76 ± 0.1131 abcd | 2.828 ± 0.0424 d | 7.835 ± 0.0099 e |
K20 | 1.275 ± 0.0085 f | 4.015 ± 0.0778 cd | 0.43 ± 0.0707 d | 1.76 ± 0.0283 e | 0.549 ± 0.0170 h | 1.025 ± 0.0141 m |
Samples | η0 (Pa·s) | η∞ (Pa·s) | λ (s) | n (-) | R2 | MSE | RMSE | MAPE |
---|---|---|---|---|---|---|---|---|
K1 | 5158 | 0.411 | 152.08 | 0.45 | 0.99 | 0.1647 | 0.4058 | 0.0161 |
K21 | 52213 | 2.454 | 128.88 | 0.54 | 0.99 | 0.3025 | 0.5500 | 0.0020 |
K32 | 36652 | 1.562 | 108.68 | 0.51 | 0.99 | 0.1243 | 0.3526 | 0.0016 |
Samples | Slope (Pa·Hz) | Intercept (Pa·s) |
---|---|---|
K1 | 0.418 ± 0.0014 a | 2.3641 ± 0.0002 c |
K21 | 0.197 ± 0.0021 c | 3.7563 ± 0.0002 a |
K32 | 0.218 ± 0.0014 b | 3.4943 ± 0.0000 b |
Samples | Xanthan (%) | LBG (%) | d [3,2] (um) | Span | d [4,3] (um) |
---|---|---|---|---|---|
K1 | 100 | 0 | 89.539 ± 0.0099 c | 2.191 ± 0.0007 b | 264.258 ± 0.004 c |
K21 | 75.061 | 24.939 | 199.419 ± 0.0060 b | 2.214 ± 0.0049 a | 474.560 ± 0.006 a |
K32 | 32.094 | 67.906 | 215.095 ± 0.0010 a | 2.124 ± 0.0042 c | 448.923 ± 0.016 b |
Treatments | Konjac Mannan (%) | Locust Bean (%) | Gellan (%) | Xanthan (%) |
---|---|---|---|---|
K1 | 0 (Level 1) | 50 (Level 4) | 50 (Level 4) | 0 (Level 1) |
K2 | 50 (Level 4) | 0 (Level 1) | 0 (Level 1) | 50 (Level 4) |
K3 | 12.5 (Level 2) | 62.5 (Level 5) | 12.5 (Level 2) | 12.5 (Level 2) |
K4 | 62.5 (Level 5) | 12.5 (Level 2) | 12.5 (Level 2) | 12.5 (Level 2) |
K5 | 12.5 (Level 2) | 12.5 (Level 2) | 62.5 (Level 5) | 12.5 (Level 2) |
K6 | 0 (Level 1) | 0 (Level 1) | 50 (Level 4) | 50 (Level 4) |
K7 | 0 (Level 1) | 50 (Level 4) | 0 (Level 1) | 50 (Level 4) |
K8 | 50 (Level 4) | 0 (Level 1) | 50 (Level 4) | 0 (Level 1) |
K9 | 50 (Level 4) | 50 (Level 4) | 0 (Level 1) | 0 (Level 1) |
K10 | 50 (Level 4) | 50 (Level 4) | 0 (Level 1) | 0 (Level 1) |
K11 | 0 (Level 1) | 50 (Level 4) | 50 (Level 4) | 0 (Level 1) |
K12 | 0 (Level 1) | 100 (Level 6) | 0 (Level 1) | 0 (Level 1) |
K13 | 12.5 (Level 2) | 12.5 (Level 2) | 12.5 (Level 2) | 62.5 (Level 5) |
K14 | 0 (Level 1) | 0 (Level 1) | 0 (Level 1) | 100 (Level 6) |
K15 | 25 (Level 3) | 25 (Level 3) | 25 (Level 3) | 25 (Level 3) |
K16 | 50 (Level 4) | 0 (Level 1) | 0 (Level 1) | 50 (Level 4) |
K17 | 50 (Level 4) | 0 (Level 1) | 50 (Level 4) | 0 (Level 1) |
K18 | 100 (Level 6) | 0 (Level 1) | 0 (Level 1) | 0 (Level 1) |
K19 | 0 (Level 1) | 50 (Level 4) | 0 (Level 1) | 50 (Level 4) |
K20 | 0 (Level 1) | 0 (Level 1) | 100 (Level 6) | 0 (Level 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shokraneh, N.; Alimi, M.; Shahidi, S.-A.; Mizani, M.; Bameni Moghadam, M.; Rafe, A. Textural and Rheological Properties of Sliceable Ketchup. Gels 2023, 9, 222. https://doi.org/10.3390/gels9030222
Shokraneh N, Alimi M, Shahidi S-A, Mizani M, Bameni Moghadam M, Rafe A. Textural and Rheological Properties of Sliceable Ketchup. Gels. 2023; 9(3):222. https://doi.org/10.3390/gels9030222
Chicago/Turabian StyleShokraneh, Nadia, Mazdak Alimi, Seyed-Ahmad Shahidi, Maryam Mizani, M. Bameni Moghadam, and Ali Rafe. 2023. "Textural and Rheological Properties of Sliceable Ketchup" Gels 9, no. 3: 222. https://doi.org/10.3390/gels9030222
APA StyleShokraneh, N., Alimi, M., Shahidi, S.-A., Mizani, M., Bameni Moghadam, M., & Rafe, A. (2023). Textural and Rheological Properties of Sliceable Ketchup. Gels, 9(3), 222. https://doi.org/10.3390/gels9030222