Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Methodology
4.1. Data Collection and Pre-Treatment
4.2. Principal Component Analysis (PCA)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tzanakakis, V.A.; Paranychianakis, N.V.; Angelakis, A.N. Water Supply and Water Scarcity. Water 2020, 12, 2347. [Google Scholar] [CrossRef]
- Environment, U.N. Global Environment Outlook 6. Available online: http://www.unep.org/resources/global-environment-outlook-6 (accessed on 8 March 2023).
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent Developments in Photocatalytic Water Treatment Technology: A Review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Lumami Kapepula, V.; García Alvarez, M.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.-D.; Van Der Bruggen, B.; Luis, P. Evaluation of Commercial Reverse Osmosis and Nanofiltration Membranes for the Removal of Heavy Metals from Surface Water in the Democratic Republic of Congo. Clean Technol. 2022, 4, 1300–1316. [Google Scholar] [CrossRef]
- Coldebella, R.; Gentil, M.; Berger, C.; Dalla Costa, H.W.; Pedrazzi, C.; Labidi, J.; Delucis, R.A.; Missio, A.L. Nanofibrillated Cellulose-Based Aerogels Functionalized with Tajuva (Maclura Tinctoria) Heartwood Extract. Polymers 2021, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.; Ahankari, S.S. Nanocellulose-Based Aerogels for Water Purification: A Review. Carbohydr. Polym. 2023, 309, 120677. [Google Scholar] [CrossRef]
- Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Growth of Bi-OBr/ZIF-67 Nanocomposites on Carbon Fiber Cloth as Filter-Membrane-Shaped Pho-tocatalyst for Degrading Pollutants in Flowing Wastewater. Adv. Fiber Mater. 2022, 4, 1620–1631. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, Y.; Xia, M.; Du, H.; Lin, Z.; Li, B.; Liu, H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022, 14, 2648. [Google Scholar] [CrossRef]
- Nargatti, K.I.; Subhedar, A.R.; Ahankari, S.S.; Grace, A.N.; Dufresne, A. Nanocellulose-Based Aerogel Electrodes for Supercapacitors: A Review. Carbohydr. Polym. 2022, 297, 120039. [Google Scholar] [CrossRef]
- Hasan, M.A.; Sangashetty, R.; Esther, A.C.M.; Patil, S.B.; Sherikar, B.N.; Dey, A. Prospect of Thermal Insulation by Silica Aerogel: A Brief Review. J. Inst. Eng. India Ser. D 2017, 98, 297–304. [Google Scholar] [CrossRef]
- Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in Carbon Nanostructure–Silica Aerogel Composites: A Review. J. Mater. Chem. A 2018, 6, 1340–1369. [Google Scholar] [CrossRef]
- Mekonnen, B.T.; Ding, W.; Liu, H.; Guo, S.; Pang, X.; Ding, Z.; Seid, M.H. Preparation of Aerogel and Its Application Progress in Coatings: A Mini Overview. J. Leather Sci. Eng. 2021, 3, 25. [Google Scholar] [CrossRef]
- Zhang, Y.; Chang, C.-H. Metal–Organic Framework Thin Films: Fabrication, Modification, and Patterning. Processes 2020, 8, 377. [Google Scholar] [CrossRef]
- Chen, H.-B.; Chiou, B.-S.; Wang, Y.-Z.; Schiraldi, D.A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5, 1715–1721. [Google Scholar] [CrossRef] [PubMed]
- Ganesamoorthy, R.; Vadivel, V.K.; Kumar, R.; Kushwaha, O.S.; Mamane, H. Aerogels for Water Treatment: A Review. J. Clean. Prod. 2021, 329, 129713. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ha, L.Q.; Nguyen, T.D.L.; Ly, P.H.; Nguyen, D.M.; Hoang, D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS Omega 2022, 7, 1003–1013. [Google Scholar] [CrossRef]
- Berrio, M.E.; Oñate, A.; Salas, A.; Fernández, K.; Meléndrez, M.F. Synthesis and applications of graphene oxide aerogels in bone tissue regeneration: A review. Mater. Today Chem. 2021, 20, 100422. [Google Scholar] [CrossRef]
- Fan, J.; Grande, C.D.; Rodrigues, D.F. Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ. Sci. Nano 2017, 4, 1808–1816. [Google Scholar] [CrossRef]
- Down, M.P.; Rowley-Neale, S.J.; Smith, G.C.; Banks, C. Fabrication of graphene oxide supercapacitor devices. ACS Appl. Energy Mater. 2018, 1, 707–714. [Google Scholar] [CrossRef]
- Awang, N.; Johari, A.; Radzi, A.R.M.; Yajid, M.A.M. A Review on 3D Nanomaterial: Aerogel-Derived Nanocellulose for Energy Storage. Adv. Transdiscipl. Eng. Technol. 2022, 174, 309–320. [Google Scholar]
- Alves, P.; Dias, D.A.; Pontinha, A.D.R. Silica Aerogel-Rubber Composite: A Sustainable Alternative for Buildings’ Thermal Insulation. Molecules 2022, 27, 7127. [Google Scholar] [CrossRef]
- Ren, S.; Li, J.; Huang, K.; Bai, Y.; Wang, C. Effect of composite orders of graphene oxide on thermal properties of Na2HPO4• 12H2O/expanded vermiculite composite phase change materials. J. Energy Storage 2021, 41, 102980. [Google Scholar] [CrossRef]
- Zhou, J.; Hsieh, Y.L. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy 2020, 68, 104305. [Google Scholar] [CrossRef]
- Xi, S.; Wang, L.; Shao, F.; Song, M.; Xie, H.; Yu, W. Ecofriendly chitosan-derived carbon aerogels based eutectic hydrated salts for good solar thermal energy storage and corrosion mitigation effect. Energy Build. 2022, 271, 112336. [Google Scholar] [CrossRef]
- Biru, E.I.; Necolau, M.I.; Zainea, A.; Iovu, H. Graphene Oxide–Protein-Based Scaffolds for Tissue Engineering: Recent Advances and Applications. Polymers 2022, 14, 1032. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Adnan, A.; Yahya, E.B.; Olaiya, N.; Safrida, S.; Hossain, M.S.; Balakrishnan, V.; Gopakumar, D.A.; Abdullah, C.; Oyekanmi, A.; et al. A review on plant cellulose nanofibre-based aerogels for biomedical applications. Polymers 2020, 12, 1759. [Google Scholar] [CrossRef] [PubMed]
- Lovskaya, D.; Menshutina, N.; Mochalova, M.; Nosov, A.; Grebenyuk, A. Chitosan-based aerogel particles as highly effective local hemostatic agents. production process and in vivo evaluations. Polymers 2020, 12, 2055. [Google Scholar] [CrossRef]
- Peng, L.; Zheng, Y.; Li, J.; Jin, Y.; Gao, C. Monolithic neat graphene oxide aerogel for efficient catalysis of S → O acetyl migration. ACS Catal. 2015, 5, 3387–3392. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Zhang, Y.; van Bochove, B.; Mäkilä, E.; Seppälä, J.; Xu, W.; Willför, S.; Xu, C. Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep. Purif. Technol. 2020, 242, 116523. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Elabiad, M.A.; Mohamed, A.A. Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100719. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Li, X.; Mei, C.; Zheng, J.; E, S.; Duan, G.; Liu, K.; Jiang, S. Liquid transport and real-time dye purification via lotus petiole-inspired long-range-ordered anisotropic cellulose nanofibril aerogels. ACS Nano 2021, 15, 20666–20677. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Tian, Z.; Duan, G.; Pan, H.; Yue, Y.; Li, S.; Jian, S.; Yang, W.; Liu, K.; et al. MOFs meet wood: Reusable magnetic hydrophilic composites toward efficient water treatment with super-high dye adsorption capacity at high dye concentration. Chem. Eng. J. 2022, 446, 136851. [Google Scholar] [CrossRef]
- Beh, J.H.; Lim, T.H.; Lew, J.H.; Lai, J.C. Cellulose Nanofibril-Based Aerogel Derived from Sago Pith Waste and Its Application on Methylene Blue Removal. Int. J. Biol. Macromol. 2020, 160, 836–845. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Mäkilä, E.; Willför, S.; Xu, C. Ultralight and Porous Cellulose Nanofibers/Polyethyleneimine Composite Aerogels with Exceptional Performance for Selective Anionic Dye Adsorption. Ind. Crops Prod. 2022, 177, 114513. [Google Scholar] [CrossRef]
- Wang, Z.; Song, L.; Wang, Y.; Zhang, X.-F.; Yao, J. Construction of a Hybrid Graphene Oxide/Nanofibrillated Cellulose Aerogel Used for the Efficient Removal of Methylene Blue and Tetracycline. J. Phys. Chem. Solids 2021, 150, 109839. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Liu, H.; Du, C.; Yu, H.; Ru, J.; Zhou, Z. Effect of Surface Charge Content in the TEMPO-Oxidized Cellulose Nanofibers on Morphologies and Properties of Poly(N-Isopropylacrylamide)-Based Composite Hydrogels. Ind. Crops Prod. 2016, 92, 227–235. [Google Scholar] [CrossRef]
- Ferreira-Neto, E.P.; Ullah, S.; da Silva, T.C.A.; Domeneguetti, R.R.; Perissinotto, A.P.; de Vicente, F.S.; Rodrigues-Filho, U.P.; Ribeiro, S.J.L. Bacterial Nanocellulose/MoS2 Hybrid Aerogels as Bifunctional Adsorbent/Photocatalyst Membranes for in-Flow Water Decontamination. ACS Appl. Mater. Interfaces 2020, 12, 41627–41643. [Google Scholar] [CrossRef]
- UiO-66 Derived N-Doped Carbon Nanoparticles Coated by PANI for Simultaneous Adsorption and Reduction of Hexavalent Chromium from Waste Water—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1385894719314639?via%3Dihub (accessed on 8 March 2023).
- Zhang, X.; Elsayed, I.; Navarathna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purification. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef]
- Sharma, P.R.; Sharma, S.K.; Lindström, T.; Hsiao, B.S. Nanocellulose-Enabled Membranes for Water Purification: Perspectives. Adv. Sustain. Syst. 2020, 4, 1900114. [Google Scholar] [CrossRef]
- Tang, J.; Song, Y.; Zhao, F.; Spinney, S.; da Silva Bernardes, J.; Tam, K.C. Compressible Cellulose Nanofibril (CNF) Based Aerogels Produced via a Bio-Inspired Strategy for Heavy Metal Ion and Dye Removal. Carbohydr. Polym. 2019, 208, 404–412. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Sabidi, S.; Ohno, T.; Maeda, T.; Andou, Y. Cu2O/TiO2 Decorated on Cellulose Nanofiber/Reduced Graphene Hydrogel for Enhanced Photocatalytic Activity and Its Antibacterial Applications. Chemosphere 2022, 286, 131731. [Google Scholar] [CrossRef]
- Do, N.H.N.; Truong, B.Y.; Nguyen, P.T.X.; Le, K.A.; Duong, H.M.; Le, P.K. Composite Aerogels of TEMPO-Oxidized Pineapple Leaf Pulp and Chitosan for Dyes Removal. Sep. Purif. Technol. 2022, 283, 120200. [Google Scholar] [CrossRef]
- Zhang, T.; Xiao, S.; Fan, K.; He, H.; Qin, Z. Preparation and Adsorption Properties of Green Cellulose-Based Composite Aerogel with Selective Adsorption of Methylene Blue. Polymer 2022, 258, 125320. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J.; Tian, X.; Guo, F.; Wang, C.; Zhang, J.; Jiang, M. Facile In-Situ Growth of Metal–Organic Framework Layer on Carboxylated Nanocellulose/Chitosan Aerogel Spheres and Their High-Efficient Adsorption and Catalytic Performance. Appl. Surf. Sci. 2022, 599, 153974. [Google Scholar] [CrossRef]
- Efficient Removal of Methyl Orange by Nanocomposite Aerogel of Polyethyleneimine and Β-cyclodextrin Grafted Cellulose Nanocrystals. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/app.51481 (accessed on 8 March 2023).
- Lei, C.; Wen, F.; Chen, J.; Chen, W.; Huang, Y.; Wang, B. Mussel-Inspired Synthesis of Magnetic Carboxymethyl Chitosan Aerogel for Removal Cationic and Anionic Dyes from Aqueous Solution. Polymer 2021, 213, 123316. [Google Scholar] [CrossRef]
- Niu, C.; Zhang, N.; Hu, C.; Zhang, C.; Zhang, H.; Xing, Y. Preparation of a Novel Citric Acid-Crosslinked Zn-MOF/Chitosan Composite and Application in Adsorption of Chromium(VI) and Methyl Orange from Aqueous Solution. Carbohydr. Polym. 2021, 258, 117644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, S.; Mu, M.; Wang, L.; Fan, Y.; Liu, X. Eco-Friendly Ferrocene-Functionalized Chitosan Aerogel for Efficient Dye Degradation and Phosphate Adsorption from Wastewater. Chem. Eng. J. 2022, 439, 135605. [Google Scholar] [CrossRef]
- Shu, D.; Feng, F.; Han, H.; Ma, Z. Prominent Adsorption Performance of Amino-Functionalized Ultra-Light Graphene Aerogel for Methyl Orange and Amaranth. Chem. Eng. J. 2017, 324, 1–9. [Google Scholar] [CrossRef]
- Ding, Y.; Tian, Z.; Li, H.; Wang, X. Efficient Removal of Organic Dyes Using a Three-Dimensional Graphene Aerogel with Excellent Recycling Stability. New Carbon Mater. 2019, 34, 315–324. [Google Scholar] [CrossRef]
- A Thiourea Cross-Linked Three-Dimensional Graphene Aerogel as a Broad-Spectrum Adsorbent for Dye and Heavy Metal Ion Removal. Available online: https://pubs.rsc.org/en/content/articlelanding/2020/nj/d0nj03345f/unauth (accessed on 8 March 2023).
- Jiang, L.; Wen, Y.; Zhu, Z.; Liu, X.; Shao, W. A Double Cross-Linked Strategy to Construct Graphene Aerogels with Highly Efficient Methylene Blue Adsorption Performance. Chemosphere 2021, 265, 129169. [Google Scholar] [CrossRef]
- Tang, S.; Xia, D.; Yao, Y.; Chen, T.; Sun, J.; Yin, Y.; Shen, W.; Peng, Y. Dye Adsorption by Self-Recoverable, Adjustable Amphiphilic Graphene Aerogel. J. Colloid Interface Sci. 2019, 554, 682–691. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, X.; Huang, X.; Yang, H. Adsorption and Heterogeneous Fenton Catalytic Performance for Magnetic Fe3O4/Reduced Graphene Oxide Aerogel. J. Mater. Sci. 2020, 55, 15695–15708. [Google Scholar] [CrossRef]
- Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Machine Learning for the Evaluation of Aerogels’ Efficiency towards Ion Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 304. [Google Scholar] [CrossRef]
- Joliffe, I.T.; Morgan, B.J.T. Principal component analysis and exploratory factor analysis. Stat. Methods Med. Res. 1992, 1, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Serneels, S.; Verdonck, T. Principal component analysis for data containing outliers and missing elements. Comput. Stat. Data Anal. 2008, 52, 1712–1727. [Google Scholar] [CrossRef]
- Younes, K.; Abdallah, M.; Hanna, E.G. The Application of Principal Components Analysis for the Comparison of Chemical and Physical Properties among Activated Carbon Models. Mater. Lett. 2022, 325, 132864. [Google Scholar] [CrossRef]
- Murshid, N.; Mouhtady, O.; Abu-samha, M.; Obeid, E.; Kharboutly, Y.; Chaouk, H.; Halwani, J.; Younes, K. Metal Oxide Hydrogel Composites for Remediation of Dye-Contaminated Wastewater: Principal Component Analysis. Gels 2022, 8, 702. [Google Scholar] [CrossRef]
- Mouhtady, O.; Obeid, E.; Abu-samha, M.; Younes, K.; Murshid, N. Evaluation of the Adsorption Efficiency of Graphene Oxide Hydrogels in Wastewater Dye Removal: Application of Principal Component Analysis. Gels 2022, 8, 447. [Google Scholar] [CrossRef]
- Younes, K.; Mouhtady, O.; Chaouk, H.; Obeid, E.; Roufayel, R.; Moghrabi, A.; Murshid, N. The Application of Principal Component Analysis (PCA) for the Optimization of the Conditions of Fabrication of Electrospun Nanofibrous Membrane for Desalination and Ion Removal. Membranes 2021, 11, 979. [Google Scholar] [CrossRef]
- Younes, K.; Laduranty, J.; Descostes, M.; Grasset, L. Molecular Biomarkers Study of an Ombrotrophic Peatland Impacted by an Anthropogenic Clay Deposit. Org. Geochem. 2017, 105, 20–32. [Google Scholar] [CrossRef]
- Younes, K.; Grasset, L. Analysis of Molecular Proxies of a Peat Core by Thermally Assisted Hydrolysis and Methylation-Gas Chromatography Combined with Multivariate Analysis. J. Anal. Appl. Pyrolysis 2017, 124, 726–732. [Google Scholar] [CrossRef]
- Korichi, W.; Ibrahimi, M.; Loqman, S.; Ouhdouch, Y.; Younes, K.; Lemée, L. Assessment of Actinobacteria Use in the Elimination of Multidrug-Resistant Bacteria of Ibn Tofail Hospital Wastewater (Marrakesh, Morocco): A Chemometric Data Analysis Approach. Environ. Sci. Pollut. Res. 2021, 28, 26840–26848. [Google Scholar] [CrossRef] [PubMed]
- Younes, K.; Grasset, L. The Application of DFRC Method for the Analysis of Carbohydrates in a Peat Bog: Validation and Comparison with Conventional Chemical and Thermochemical Degradation Techniques. Chem. Geol. 2020, 545, 119644. [Google Scholar] [CrossRef]
Sl. No. | Aerogel Composition | Physical/Chemical Parameters | Adsorption Parameters | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Density (mg/cm3) | Porosity (%) | BET surface area (m2/g) | Time to reach equilibrium (min) | Adsorption capacity (mg/g) | Removal Efficiency (%) | Number of reuse/regenerations | Removal efficiency (%) after Regeneration | |||
Nanocellulose (NC)-based Aerogels | ||||||||||
1 | SPCNF | 2.1 | – | – | 5 | 222.2 | 99 | – | – | [33] |
2 | CNF/PEI/ Ag NPs | 14.9 | 96.5 | 3.5 | 5 | – | 99.2 | 10 | 98 | [34] |
3 | GO/CNF | 26.4 | 98.2 | – | 20 | – | 99 | 5 | 91 | [16] |
4 | GO/CNF | 26.3 | – | 35 | 360 | 111.2 | – | 3 | 98 | [35] |
5 | GO/CNF | 2.2 | 99 | – | – | 265.6 | – | – | – | [36] |
6 | BNC/MoS2 | – | – | 137 | 120 | – | 96 | 6 | 86 | [37] |
7 | UiO-66/NC | 51 | – | 826 | 360 | 71.7 | – | 4 | 92 | [38] |
8 | BHA | 8.2 | 99.4 | 54 | 720 | 531 | – | 5 | 2 | [39] |
9 | NB/DANC/CMC | – | – | 48.6 | 40 | 29,842 | – | 10 | [40] | |
10 | PDA/CNF/PEI | 25 | 98.5 | – | 720 | 265.9 | – | 4 | 89 | [41] |
11 | Cu2O/TiO2/CNF/rGH | – | – | 16.2 | 120 | – | 85.62 | 4 | 79.5 | [42] |
12 | TEMPO-oxidized NC/CS | 8.4 | 99 | – | 360 | 136.6 | 91.8 | – | – | [43] |
13 | CMC/CNFs | 14.4 | 93 | 9.8 | 720 | 917.4 | >90 | 6 | – | [44] |
14 | MOF-199@ CNCA/CMCS | – | – | 102.6 | 60 | 1112.2 | – | – | – | [45] |
15 | CNC-PEI-CD/PAM | – | – | – | 90 | 155.9 | 95 | 3 | 85 | [46] |
Chitosan (CS)-based Aerogels | ||||||||||
1 | Fe3O4@ PDA/CMC | – | – | 106.7 | 120 | 217.4 | 93.9 | 7 | 60 | [47] |
2 | ZnBDC/CSC | – | – | 16.3 | 25 | 202 | ~88 | 5 | 84 | [48] |
3 | Fc-CS | – | – | 5 | 480 | 1141 | 92.8 | 5 | 80 | [49] |
Graphene (G)-based Aerogels | ||||||||||
1 | PFGA | 7.1 | – | – | 270 | 3059.2 | – | 4 | – | [50] |
2 | PVA/N/GA | – | – | 210.4 | 240 | 217 | 98.4 | 5 | 97.7 | [51] |
3 | TCGA | – | – | – | – | - | – | – | – | [52] |
4 | LEGA | 33.9 | – | – | 402 | 332.2 | 90.3 | 5 | 85 | [53] |
5 | GA | – | – | 109 | 15 | 76 | – | 10 | 89.5 | [54] |
6 | Fe3O4/rGO | – | – | 200.4 | 180 | 163.8 | – | 5 | 98 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, K.; Kharboutly, Y.; Antar, M.; Chaouk, H.; Obeid, E.; Mouhtady, O.; Abu-samha, M.; Halwani, J.; Murshid, N. Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels 2023, 9, 327. https://doi.org/10.3390/gels9040327
Younes K, Kharboutly Y, Antar M, Chaouk H, Obeid E, Mouhtady O, Abu-samha M, Halwani J, Murshid N. Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels. 2023; 9(4):327. https://doi.org/10.3390/gels9040327
Chicago/Turabian StyleYounes, Khaled, Yahya Kharboutly, Mayssara Antar, Hamdi Chaouk, Emil Obeid, Omar Mouhtady, Mahmoud Abu-samha, Jalal Halwani, and Nimer Murshid. 2023. "Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach" Gels 9, no. 4: 327. https://doi.org/10.3390/gels9040327
APA StyleYounes, K., Kharboutly, Y., Antar, M., Chaouk, H., Obeid, E., Mouhtady, O., Abu-samha, M., Halwani, J., & Murshid, N. (2023). Application of Unsupervised Learning for the Evaluation of Aerogels’ Efficiency towards Dye Removal—A Principal Component Analysis (PCA) Approach. Gels, 9(4), 327. https://doi.org/10.3390/gels9040327