Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Content and Dry Residue of Aloe Vera Gel-Based Beverages
2.2. Alcohol Insoluble Residues (AIRs)
2.3. Carbohydrate Composition
2.4. Acemannan: Amount and Carbohydrate Composition
2.5. Degree of Acetylation (DA) of Acemannan
2.6. Cell Wall Polysaccharides Present in the Aloe Vera Gel-Based Beverages
2.6.1. Cellulose
2.6.2. Hemicelluloses
2.6.3. Pectic Polysaccharides
- Degree of methylesterification (DME)
3. Conclusions
4. Materials and Methods
4.1. Commercial Aloe Vera Gel-Based Beverages
4.2. Lyophilization: Dry Residues
4.3. Alcohol Insoluble Residues (AIRs)
4.4. Isolation of Acemannan Polysaccharide
4.5. Analysis of Carbohydrate Composition
4.6. 1H Nuclear Magnetic Resonance (NMR) Analysis
4.7. Fourier Transformed Infrared (FT-IR) Spectroscopy Analysis
4.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paz-Quezada, M.; Salinas, C.; Gotteland, M.; Cardemil, L. Acemannan and Fructans from Aloe vera (Aloe barbadensis Miller) Plants as Novel Prebiotics. J. Agric. Food Chem. 2017, 65, 10029–10039. [Google Scholar] [CrossRef] [PubMed]
- Market Growth Reports. Global Aloe Vera Extract Industry Research Report, Competitive Landscape, Market Size, Regional Status and Prospect. 2022. Available online: https://www.marketgrowthreports.com/global-Aloe-vera-extract-industry-research-report-competitive-landscape-market-21903701 (accessed on 2 May 2023).
- Kima, S.T.; Pressman, P.; Clemens, R.; Moorea, A.; Hamilton, R.; Hayes, W. The absence of genotoxicity of Aloe vera beverages: A review of the literature. Food Chem. Toxicol. 2023, 174, 113628. [Google Scholar] [CrossRef] [PubMed]
- Yadeta, A.T. Food applications of Aloe species: A review. J. Plant Sci. Phytopathol. 2022, 6, 24–32. [Google Scholar]
- Rodríguez-Rodríguez, M.Z.; Meléndez-Pizarro, C.O.; Espinoza-Hicks, J.C.; Quintero-Ramos, A.; Sánchez-Madrigal, M.; Meza-Velázquez, J.A.; Jiménez-Castro, J.A. Effects of UV-C irradiation and traditional thermal processing on acemannan contained in Aloe vera gel blends. Carbohydr. Polym. 2019, 222, 114998. [Google Scholar] [CrossRef]
- Hussain, S.A.; Yadav, V.; Reddi, S.; Patil, G.R.; Singh, R.R.B.; Kapila, S. Thermal processing conditions affect in vitro immunostimulatory activity of Aloe vera juice. J. Appl. Res. Med. Aromat. Plants 2019, 12, 73–77. [Google Scholar] [CrossRef]
- Jettanacheawchankit, S.; Sasithanasate, S.; Sangvanich, P.; Banlunara, W.; Thunyakitpisal, P. Acemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing. J. Pharmacol. Sci. 2009, 109, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Tiku, A.B. Immunomodulatory potential of acemannan (polysaccharide from Aloe vera) against radiation induced mortality in Swiss albino mice. Food Agric. Immunol. 2016, 27, 72–86. [Google Scholar] [CrossRef]
- Rodrigues, L.C.; Fernandes, E.M.; Ribeiro, A.R.; Ribeiro, A.P.; Silva, S.S.; Reis, R.L. Physicochemical features assessment of acemannan-based ternary blended films for biomedical purposes. Carbohydr. Polym. 2021, 257, 117601. [Google Scholar] [CrossRef]
- Lachenmeier, K.; Kuepper, U.; Musshoff, F.; Madea, B.; Reusch, H.; Lachenmeier, D. Quality control of Aloe vera beverages. Electron. J. Environ. Agric. Food Chem. 2005, 4, 1033–1042. [Google Scholar]
- Sehgal, I.; Wallace, D.W.; Scott, M.; Kousoulas, K. An in vitro and in vivo toxicologic evaluation of a stabilized Aloe vera gel supplement drink in mice. Food Chem. Toxicol. 2013, 55, 363–370. [Google Scholar] [CrossRef]
- Miranda, M.; Maureira, H.; Rodríguez, K.; Vega-Gálvez, A. Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe Vera (Aloe barbadensis Miller) gel. J. Food Eng. 2009, 91, 297–304. [Google Scholar] [CrossRef]
- Baldi, A.; Sommella, E.; Campiglia, P.; Daglia, M. Aloe gel-base food products: Chemical, toxicological, and regulatory aspects. Regul. Toxicol. Pharmacol. 2021, 119, 104818. [Google Scholar] [CrossRef] [PubMed]
- Nicolau-Lapeña, I.; Colàs-Medà, P.; Alegre, I.; Aguiló-Aguayo, I.; Muranyi, P.; Viñas, I. Aloe vera gel: An update on its use as a functional edible coating to preserve fruits and vegetables. Prog. Org. Coat. 2021, 151, 106007. [Google Scholar] [CrossRef]
- Xie, J.H.; Jin, M.L.; Morris, G.A.; Zha, X.Q.; Chen, H.Q.; Yi, Y.; Li, J.E.; Wang, Z.J.; Gao, J.; Nie, S.P.; et al. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit. Rev. Food Sci. Nutr. 2016, 56, 60–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cui, Y.; Pi, F.; Cheng, Y.; Guo, Y.; Qian, H. Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from Aloe vera: A review. Molecules 2019, 24, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandra, C.T.; Rao, P.S. Processing of Aloe Vera Leaf Gel: A Review. Am. J. Agric. Biol. Sci. 2008, 3, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Femenia, A.; Sánchez, E.S.; Simal, S.; Rosselló, C. Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr. Polym. 1999, 39, 109–117. [Google Scholar] [CrossRef]
- Maan, A.A.; Reiad-Ahmed, Z.F.; Iqbal-Khan, M.K.; Riaz, A.; Nazir, A. Aloe vera gel, an excellent base material for edible films and coatings. Trends Food Sci. Technol. 2021, 116, 329–341. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, J.G.; Kim, D.G.; Kim, M.K.; Park, J.H.; Shin, Y.G.; Lee, S.K.; Jo, T.H.; Oh, S.T. The developement of a new method to detect the adulteration of commercial Aloe gel powders. Arch. Pharmacol. Res. 2009, 21, 514–520. [Google Scholar] [CrossRef]
- Manna, S.; McAnalley, B.H. Determination of the position of the O-acetyl group in a β-(1 → 4)-mannan (acemannan) from Aloe barbardensis Miller. Carbohydr. Res. 1993, 241, 317–319. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Femenia, A.; Comas-Serra, F.; Rodríguez-González, V.M. Compositional and structural features of the main bioactive polysaccharides present in the Aloe vera plant. J. AOAC Int. 2018, 101, 1711–1719. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.D.; Yin, J.Y.; Huang, X.J.; Que, Z.Q.; Nie, S.P. Structural and conformational characterization of linear O-acetyl-glucomannan purified from gel of Aloe barbadensis Miller. Int. J. Biol. Macromol. 2018, 120, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Sierra-García, G.D.; Castro-Ríos, R.; González-Horta, A.; Lara-Arias, J.; Chávez-Montes, A. Acemannan, an Extracted Polysaccharide from Aloe vera: A Literature Review. Nat. Prod. Commun. 2014, 9, 1217–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minjares-Fuentes, R.; Rodríguez-González, V.M.; González-Laredo, R.F.; Eim, V.; González-Centeno, M.R.; Femenia, A. Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller). Carbohydr. Polym. 2017, 168, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Chokboribal, J.; Tachaboonyakiat, W.; Sangvanich, P.; Ruangpornvisuti, V.; Jettanacheawchankit, S.; Thunyakitpisal, P. Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera. Carbohydr. Polym. 2015, 133, 556–566. [Google Scholar] [CrossRef]
- Campestrini, L.H.; Silveira, J.L.M.; Duarte, M.E.R.; Koop, H.S.; Noseda, M.D. NMR and rheological study of Aloe barbadensis partially acetylated glucomannan. Carbohydr. Polym. 2013, 94, 511–519. [Google Scholar] [CrossRef] [Green Version]
- López, Z.; Salazar-Zúñiga, M.N.; Femenia, A.; Acevedo-Hernández, G.J.; Godínez-Flores, J.A.; Cano, M.E.; Knauth, P. Dry but Not Humid Thermal Processing of Aloe vera Gel Promotes Cytotoxicity on Human Intestinal Cells HT-29. Foods 2022, 11, 745. [Google Scholar] [CrossRef]
- Liu, P.; Chen, D.; Shi, J. Chemical constituents, biological activity and agricultural cultivation of Aloe vera. Asian J. Chem. 2013, 25, 6477–6485. [Google Scholar] [CrossRef]
- Minjares-Fuentes, R.; Medina-Torres, L.; González-Laredo, R.F.; Rodríguez-González, V.M.; Eim, V.; Femenia, A. Influence of water deficit on the main polysaccharides and the rheological properties of Aloe vera (Aloe barbadensis Miller) mucilage. Ind. Crops Prod. 2017, 109, 644–653. [Google Scholar] [CrossRef]
- Femenia, A.; García-Pascual, P.; Simal, S.; Rosselló, C. Effects of heat treatment and dehydration on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym. 2003, 51, 397–405. [Google Scholar] [CrossRef]
- Bozzi, A.; Perrin, C.; Austin, S.; Arce Vera, F. Quality and authenticity of commercial Aloe vera gel powders. Food Chem. 2007, 103, 22–30. [Google Scholar] [CrossRef]
- Boudreau, M.D.; Beland, F.A. An Evaluation of the Biological and Toxicological Properties of Aloe barbadensis (Miller), Aloe Vera. J. Environ. Sci. Health 2006, 24, 103–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, J.; Nunes, F.M.; Domingues, P.; Coimbra, M.A.; Domingues, M.R. Mass spectrometry characterization of an Aloe vera mannan presenting immunostimulatory activity. Carbohydr. Polym. 2012, 90, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Talmadge, J.; Chavez, J.; Jacobs, L.; Munger, C.; Chinnah, T.; Chow, J.T.; Williamson, D.; Yates, K. Fractionation of Aloe vera L. inner gel, purification and molecular profiling of activity. Int. Immunopharmacol. 2004, 4, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-González, V.M.; Femenia, A.; González-Laredo, R.F.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; Candelas-Cadillo, M.G.; Ramírez-Baca, P.; Simal, S.; Rosselló, C. Effects of pasteurization on bioactive polysaccharide acemannan and cell wall polymers from Aloe barbadensis Miller. Carbohydr. Polym. 2011, 86, 1675–1683. [Google Scholar] [CrossRef]
- Sandhu, A.P.S.; Randhawa, G.S.; Dhugga, K.S. Plant Cell Wall Matrix Polysaccharide Biosynthesis. Mol. Plant 2009, 2, 840–850. [Google Scholar] [CrossRef]
- Scheller, H.V.; Ulvskov, P. Hemicelluloses. Annu. Rev. Plant Biol. 2010, 61, 263–289. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Re-constructing our models of cellulose and primary cell wall assembly. Curr. Opin. Plant Biol. 2014, 22, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Tang, N.; Jin, X.; Gao, W. Fabrications and applications of hemicellulose-based bio-adsorbents. Carbohydr. Polym. 2021, 278, 118945. [Google Scholar] [CrossRef]
- Pauly, M.; Gille, S.; Liu, L.; Mansoori, N.; de Souza, A.; Schultink, A.; Xiong, G. Hemicellulose biosynthesis. Planta 2013, 238, 627–642. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, M.; Wang, D.; Zhao, D.; Wang, M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int. J. Biol. Macromol. 2023, 225, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, K.; Protzko, R.; Zhang, L.; Benz, J.P. Spotlight on fungal pectin utilization—From phytopathogenicity to molecular recognition and industrial applications. Appl. Microbiol. Biotechnol. 2019, 103, 2507–2524. [Google Scholar] [CrossRef] [PubMed]
- Kyomugasho, C.; Christiaens, S.; Shpigelman, A.; van Loey, A.M.; Hendrickx, M.E. FTIR spectroscopy, a reliable method for routine analysis of the degree of methylesterification of pectin in different fruit- and vegetable-based matrices. Food Chem. 2015, 176, 82–90. [Google Scholar] [CrossRef]
- Umaña, M.M.; Dalmau, M.E.; Eim, V.S.; Femenia, A.; Rosselló, C. Effects of acoustic power and pH on pectin-enriched extracts obtained from citrus by-products. Modelling of the extraction process. J. Sci. Food Agric. 2019, 99, 6893–6902. [Google Scholar] [CrossRef] [PubMed]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef]
- Manrique, G.D.; Lajolo, F.M. FTIR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol. Technol. 2002, 25, 99–107. [Google Scholar] [CrossRef]
Group | Sample Number | Water Content (g H2O/100 g Sample) |
---|---|---|
Flavoured | 1 | 95.92 ± 0.08 |
2 | 99.43 ± 0.05 | |
3 | 99.01 ± 0.03 | |
4 | 90.34 ± 0.21 | |
5 | 89.40 ± 0.14 | |
6 | 92.23 ± 0.13 | |
7 | 86.21 ± 0.53 | |
Unflavoured | 8 | 99.53 ± 0.05 |
9 | 99.65 ± 0.15 | |
10 | 98.64 ± 0.05 | |
11 | 99.31 ± 0.07 | |
12 | 99.08 ± 0.21 | |
13 | 98.92 ± 0.17 | |
14 | 99.51 ± 0.04 | |
15 | 99.46 ± 0.07 |
Group | Sample Number | Rha 1 | Fuc | Ara | Xyl | Man | Gal | Glc | UA |
---|---|---|---|---|---|---|---|---|---|
Flav. | 1 | 2.3 ± 0.1 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.5 ± 0.0 | 2.0 ± 0.1 | 0.4 ± 0.0 | 7.0 ± 0.4 | 1.5 ± 0.1 |
2 | 4.0 ± 2.7 | 0.5 ± 0.0 | 3.3 ± 0.3 | 7.0 ± 0.6 | 13.3 ± 0.9 | 4.0 ± 0.2 | 68.3 ± 3.3 | 14.0 ± 1.0 | |
3 | 5.8 ± 0.1 | 0.4 ± 0.0 | 1.0 ± 0.1 | 5.7 ± 0.4 | 9.5 ± 0.6 | 2.2 ± 0.0 | 179.2 ± 1.4 | 8.2 ± 0.6 | |
4 | 4.6 ± 0.2 | 0.3 ± 0.0 | 0.6 ± 0.0 | 1.5 ± 0.1 | 4.0 ± 0.3 | 0.9 ± 0.0 | 44.7 ± 2.5 | 3.4 ± 0.3 | |
5 | 4.9 ± 0.2 | 0.3 ± 0.0 | 0.6 ± 0.1 | 2.4 ± 0.1 | 5.6 ± 0.4 | 1.2 ± 0.0 | 65.6 ± 3.7 | 5.4 ± 0.4 | |
6 | 8.1 ± 0.5 | 1.6 ± 0.1 | 16.2 ± 1.4 | 12.5 ± 0.8 | 21.4 ± 1.8 | 19.1 ± 0.7 | 164.2 ± 16.2 | 52.9 ± 3.1 | |
7 | 0.2 ± 0.0 | 0.0 ± 0.0 | 0.5 ± 0.0 | 0.3 ± 0.0 | 6.5 ± 0.4 | 0.7 ± 0.0 | 11.4 ± 0.7 | 1.4 ± 0.1 | |
Unflav. | 8 | 0.5 ± 0.0 | 0.4 ± 0.0 | 1.2 ± 0.1 | 3.5 ± 0.2 | 10.1 ± 0.7 | 2.2 ± 0.1 | 16.3 ± 0.9 | 9.8 ± 0.7 |
9 | 0.3 ± 0.0 | 0.2 ± 0.0 | 0.4 ± 0.0 | 1.8 ± 0.1 | 3.2 ± 0.2 | 0.8 ± 0.0 | 8.2 ± 0.5 | 4.2 ± 0.3 | |
10 | 0.0 ± 0.0 | 0.0 ± 0.0 | 6.7 ± 0.6 | 0.0 ± 0.0 | 214.1 ± 16.0 | 9.0 ± 0.7 | 151.8 ± 8.7 | 0.4 ± 0.0 | |
11 | 0.0 ± 0.0 | 0.0 ± 0.0 | 5.2 ± 0.4 | 6.4 ± 0.3 | 169.7 ± 0.3 | 6.0 ± 0.2 | 50.1 ± 4.3 | 6.6 ± 0.5 | |
12 | 0.8 ± 0.0 | 0.7 ± 0.1 | 1.1 ± 0.1 | 5.8 ± 0.4 | 8.2 ± 0.5 | 2.2 ± 0.1 | 29.7 ± 1.7 | 16.6 ± 1.2 | |
13 | 1.5 ± 0.1 | 0.1 ± 0.0 | 3.4 ± 0.3 | 3.5 ± 0.2 | 258.7 ± 25.6 | 5.7 ± 0.2 | 43.9 ± 2.5 | 31.3 ± 2.9 | |
14 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.4 ± 0.0 | 5.2 ± 0.3 | 73.1 ± 4.8 | 1.3 ± 0.1 | 7.8 ± 0.4 | 1.6 ± 0.1 | |
15 | 1.1 ± 0.0 | 0.6 ± 0.1 | 1.9 ± 0.2 | 5.8 ± 0.4 | 26.7 ± 1.7 | 4.6 ± 0.2 | 37.2 ± 2.1 | 13.5 ± 1.0 |
Group | Sample Number | Man 1 | Gal | Glc |
---|---|---|---|---|
Flavoured | 1 | 77.4 ± 1.0 | 1.1 ± 0.1 | 21.5 ± 0.5 |
2 | 78.2 ± 0.9 | 1.0 ± 0.1 | 20.8 ± 0.8 | |
3 | 75.6 ± 1.7 | 0.7 ± 0.0 | 23.7 ± 0.6 | |
4 | 77.4 ± 0.8 | 0.6 ± 0.1 | 22.0± 0.5 | |
5 | 78.3 ± 1.0 | 0.4 ± 0.1 | 21.3 ± 0.7 | |
6 | 77.8 ± 0.9 | 1.2 ± 0.2 | 21.0 ± 0.3 | |
7 | 77.3 ± 1.8 | 0.5 ± 0.1 | 22.2 ± 0.5 | |
Unflavoured | 8 | 79.3 ± 1.7 | 1.3 ± 0.4 | 19.4 ± 0.7 |
9 | 79.9 ± 1.2 | 1.2 ± 0.5 | 18.9 ± 0.3 | |
10 | 77.0 ± 0.9 | 1.8 ± 0.2 | 21.2 ± 0.8 | |
11 | 78.5 ± 1.3 | 1.4 ± 0.1 | 20.1 ± 0.5 | |
12 | 76.1 ± 0.9 | 2.2 ± 0.2 | 21.7 ± 0.9 | |
13 | 82.5 ± 0.7 | 1.1 ± 0.1 | 16.4 ± 1.1 | |
14 | 79.1 ± 0.9 | 0.8 ± 0.2 | 20.1 ± 0.9 | |
15 | 78.0 ± 0.7 | 1.5 ± 0.2 | 20.5 ± 0.7 |
Group | Sample Number | % Aloe Vera Gel (as Labelled) | Price per Litre (€) | Other Ingredients (as Labelled) |
---|---|---|---|---|
Flavoured | 1 | 30.0 | 2.18 | Fructose, citric acid, sodium citrate, grape aroma, vitamin C, gelan gum, calcium lactate |
2 | 30.0 | 2.60 | Fructose, citric acid, sodium citrate, grape aroma, vitamin C, gelan gum, calcium lactate | |
3 | 30.0 | 2.70 | Fructose, citric acid, grape juice, ascorbic acid, carboxymethyl cellulose, steviol | |
4 | 30.0 | 5.70 | Fructose, calcium lactate, citric acid, sodium citrate, grape flavour, sucrose, gelan gum | |
5 | 30.0 | 5.70 | Fructose, calcium lactate, citric acid, sodium citrate, pomegranate flavour | |
6 | 60.0 | 11.63 | Apple juice, sucralose, citric acid, potassium sorbate, sodium benzoate | |
7 | 76.8 | 17.90 | Pomegranate juice, citric acid, ascorbic acid | |
Unflavoured | 8 | 99.5 | 5.55 | Citric acid, ascorbic acid |
9 | 99.5 | 5.99 | Citric acid, ascorbic acid | |
10 | 99.7 | 13.99 | Citric acid, potassium sorbate, ascorbic acid | |
11 | 99.7 | 19.99 | Citric acid | |
12 | 99.8 | 17.90 | Citric acid, ascorbic acid | |
13 | 99.8 | 33.90 | Citric acid | |
14 | 99.8 | 21.20 | Citric acid | |
15 | 99.8 | 12.75 | Citric acid, green tea, stevia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comas-Serra, F.; Estrada, P.; Minjares-Fuentes, R.; Femenia, A. Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel. Gels 2023, 9, 552. https://doi.org/10.3390/gels9070552
Comas-Serra F, Estrada P, Minjares-Fuentes R, Femenia A. Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel. Gels. 2023; 9(7):552. https://doi.org/10.3390/gels9070552
Chicago/Turabian StyleComas-Serra, Francesca, Paula Estrada, Rafael Minjares-Fuentes, and Antoni Femenia. 2023. "Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel" Gels 9, no. 7: 552. https://doi.org/10.3390/gels9070552
APA StyleComas-Serra, F., Estrada, P., Minjares-Fuentes, R., & Femenia, A. (2023). Evaluation of Acemannan in Different Commercial Beverages Containing Aloe Vera (Aloe barbadensis Miller) Gel. Gels, 9(7), 552. https://doi.org/10.3390/gels9070552