Observation of Laser-Induced Bubbles in Glycerol–Water Mixtures
Abstract
:1. Introduction
2. Description of the Bubble Process
3. Methods
3.1. Bubble Area
3.1.1. Optical Setup
3.1.2. Data Processing
3.2. Vibration Measurements
Optical Setup
3.3. Relevant Material Properties
3.4. Bubble Area
3.5. Vibration Spectrum
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaei, F.; Vanraes, P.; Nikiforov, A.; Morent, R.; De Geyter, N. Applications of Plasma-Liquid Systems: A Review. Materials 2019, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- ONeill, L.; Weatherington, M.; Kane, T. Raman Spectroscopy of Common Fertilizers in Aqueous Solution and Their Detection. Spectrosc. J. 2024, 2, 332–340. [Google Scholar] [CrossRef]
- Zhou, R.; Li, K.; Cao, Y.; Shi, W.; Yang, Y.; Tan, L.; Hu, R.; Jin, Y. Experimental Study of Laser-Induced Cavitation Bubbles near Wall: Plasma Shielding Observation. Water 2024, 16, 1324. [Google Scholar] [CrossRef]
- Fu, L.; Liang, X.X.; Wang, S.; Wang, S.; Wang, P.; Zhang, Z.; Wang, J.; Vogel, A.; Yao, C. Laser induced spherical bubble dynamics in partially confined geometry with acoustic feedback from container walls. Ultrason. Sonochem. 2023, 101, 106664. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-M.; He, J.; Lu, J.; Ni, X.-W. Growth and collapse of laser-induced bubbles in glycerol–water mixtures. Chin. Phys. B 2008, 2489, 2574–2579. [Google Scholar] [CrossRef]
- Englert, E.M.; McCarn, A.; Williams, G.A. Luminescence from laser-induced bubbles in water-glycerol mixtures: Effect of viscosity. Phys. Rev. E-Stat. Nonlinear Soft Matter Phys. 2011, 83, 046306. [Google Scholar] [CrossRef] [PubMed]
- Lazic, V.; Jovićević, S. Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects. Spectrochim. Acta-Part B At. Spectrosc. 2014, 101, 288–311. [Google Scholar] [CrossRef]
- Kennedy, P.K.; Hammer, D.X.; Rockwell, B.A. Laser-induced breakdown in aqueous media. Prog. Quantum Electron. 1997, 21, 155–248. [Google Scholar] [CrossRef]
- Jia, Z.; Li, D.; Tian, Y.; Pan, H.; Zhong, Q.; Yao, Z.; Lu, Y.; Guo, J.; Zheng, R. Early dynamics of laser-induced plasma and cavitation bubble in water. Spectrochim. Acta-Part B At. Spectrosc. 2023, 206, 106713. [Google Scholar] [CrossRef]
- Fu, L.; Wang, J.; Wang, S.; Zhang, Z.; Vogel, A.; Liang, X.X.; Yao, C. Secondary cavitation bubble dynamics during laser-induced bubble formation in a small container. Opt. Express 2024, 32, 9747. [Google Scholar] [CrossRef] [PubMed]
- Silva Pineda, G.; Ferrer Argote, L.; unam, D. Vibration measurement using laser interferometry. In Proceedings of the Sixth International Conference on Education and Training in Optics and Photonics, Cancún, Mexico, 28–30 July 1999. [Google Scholar] [CrossRef]
- Cheng, N.S. Formula for the Viscosity of a Glycerol-Water Mixture. Ind. Eng. Chem. Res. 2008, 47, 3285–3288. [Google Scholar] [CrossRef]
- Volk, A.; Kähler, C.J. Density model for aqueous glycerol solutions. Exp. Fluids 2018, 59, 75. [Google Scholar] [CrossRef]
- Sogandares, F.M.; Fry, E.S. Absorption spectrum (340–640 nm) of pure water I Photothermal measurements. Appl. Opt. 1997, 36, 8699. [Google Scholar] [CrossRef]
- Shafiee, A.; Ghadiri, E.; Kassis, J.; Williams, D.; Atala, A. Energy band gap investigation of biomaterials: A comprehensive material approach for biocompatibility of medical electronic devices. Micromachines 2020, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Dukhin, A.S.; Goetz, P.J. Fundamentals of acoustics in homogeneous liquids: Longitudinal rheology. In Studies in Interface Science; Elsevier: Amsterdam, The Netherlands, 2010; Volume 24, pp. 91–125. [Google Scholar] [CrossRef]
- Zhong, X.; Eshraghi, J.; Vlachos, P.; Dabiri, S.; Ardekani, A.M. A model for a laser-induced cavitation bubble. Int. J. Multiph. Flow 2020, 132, 103433. [Google Scholar] [CrossRef]
Mass Concentration of Glycerol | Density (kg/m3) | Dynamic Viscosity (Ns/m2) | Absorption Coefficient (m−1) | Speed of Sound (m/s) |
---|---|---|---|---|
0 | 996.89 | 0.001 | 0.0498 [14] | 1500 |
0.25 | 1.06 × 103 | 0.002 | ||
0.667 | 1.17 × 103 | 0.014 | ||
0.75 | 1.19 × 103 | 0.027 | ||
1 | 1.27 × 103 | 0.906 | 0.05 [15] | 1964 |
Mass Concentration of Glycerol | Characteristic Frequency (kHz) | Envelope Decay Constant (1/s) |
---|---|---|
0 | 3.03 | 4924 |
0.25 | 2.73 | 2555 |
0.667 | 2.32 | 2010 |
0.75 | 2.49 | 3464 |
1 | 2.68 | 2860 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ONeill, L.; Kane, T. Observation of Laser-Induced Bubbles in Glycerol–Water Mixtures. Fluids 2025, 10, 70. https://doi.org/10.3390/fluids10030070
ONeill L, Kane T. Observation of Laser-Induced Bubbles in Glycerol–Water Mixtures. Fluids. 2025; 10(3):70. https://doi.org/10.3390/fluids10030070
Chicago/Turabian StyleONeill, Laurel, and Tim Kane. 2025. "Observation of Laser-Induced Bubbles in Glycerol–Water Mixtures" Fluids 10, no. 3: 70. https://doi.org/10.3390/fluids10030070
APA StyleONeill, L., & Kane, T. (2025). Observation of Laser-Induced Bubbles in Glycerol–Water Mixtures. Fluids, 10(3), 70. https://doi.org/10.3390/fluids10030070