A New Non-Equilibrium Thermodynamic Fractional Visco-Inelastic Model to Predict Experimentally Inaccessible Processes and Investigate Pathophysiological Cellular Structures
Abstract
:1. Introduction
- (i)
- To formulate a fractional model for dynamic complex modules in visco-inelastic media of order one, based on Kluitenberg’s theory;
- (ii)
- To show how this model can be applied to investigate biological and pathological tissues by using an ultrasound longitudinal wave as a probe.
2. Methods
2.1. Remarks on Non-Equilibrium Thermodynamics with Internal Variables
2.2. Rheological Differential Equation
2.3. Remarks on Linear Response Theory
2.4. Ultrasound Wave Approach: Summary of Previous Results
3. Results
Fractional Visco-Inelastic Model
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Kuiken, G.D.C. Thermodynamics of Irreversible Processes: Application to Diffusion and Rheology; Wiley: New York, NY, USA, 1994; ISBN 978-0-471-94844-5. [Google Scholar]
- De Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics; Dover Publication: New York, NY, USA, 1984. [Google Scholar]
- Kluitenberg, G.A. Thermodynamical theory of elasticity and plasticity. Physica 1962, 28, 217–232. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. A note on the thermodynamics of Maxwell bodies, Kelvin bodies (Voigt bodies), and fluids. Physica 1962, 28, 561–568. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. On rheology and thermodynamics of irreversible processes. Physica 1962, 28, 1173. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. On the thermodynamics of viscosity and plasticity. Physica 1963, 29, 633–652. [Google Scholar] [CrossRef]
- Kluitenberg, G.A. A thermodynamic derivation of the stress–strain relations for Burgers media and related substances. Physica 1968, 38, 513–548. [Google Scholar] [CrossRef]
- Farsaci, F.; Ciancio, V.; Rogolino, P. Mechanical model for relaxation phenomena in viscoanelastic media of order one. Physica B 2010, 405, 3208–3212. [Google Scholar] [CrossRef]
- Ciancio, V.; Farsaci, F.; Rogolino, P. Mathematical approach to the relaxation phenomena. Appl. Sci. 2009, 11, 48–59. [Google Scholar]
- Ciancio, V.; Farsaci, F.; Bartolotta, A. Phenomenological and state coefficients in viscoelastic medium order one (with memory). In Proceedings of the International Conference Computational Science and Its Applications, Glasgow, UK, 8–11 May 2006; Volume 3980, pp. 821–827. [Google Scholar]
- Ciancio, V.; Bartolotta, A.; Farsaci, F. Experimental confirmations on a thermodynamical theory for viscoanelastic media with memory. Physica B 2007, 394, 8–13. [Google Scholar] [CrossRef]
- Farsaci, F.; Rogolino, P. An alternative dielectric model for low and high frequencies: A non-equilibrium thermodynamic approach. J. Non-Equilib. Thermodyn. 2012, 37, 27–41. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Cavallaro, M.; Russo, A.; Ficarra, S. Low frequency dielectric characteristics of human blood: A nonequilibrium thermodynamic approach. J. Mol. Liq. 2013, 188, 113–119. [Google Scholar] [CrossRef]
- Farsaci, F.; Ficarra, S.; Russo, A.; Galtieri, A.; Tellone, E. Dielectric properties of human diabetic blood: Thermodynamic characterization and new prospective for alternative diagnostic techniques. J. Adv. Dielectr. 2015, 5, 1550021. [Google Scholar] [CrossRef]
- Farsaci, F.; Russo, A.; Ficarra, S.; Tellone, E. Dielectric Properties of Human Normal and Malignant Liver Tissue: A Non-Equilibrium Thermodynamics Approach. Open Access Libr. J. 2015, 2, e1395. [Google Scholar] [CrossRef]
- Ciancio, V.; Farsaci, F.; Rogolino, P. On a thermodynamical model for dielectric relaxation phenomena. Physica B 2010, 405, 174–179. [Google Scholar] [CrossRef]
- Kremer, F.; Schonhals, A. (Eds.) Broadband Dielectric Spectroscopy; Springer: Berlin, Germany, 2003; ISBN 978-3-642-62809-2. [Google Scholar]
- Champeney, D.C.; Taylor, C.A. Fourier Transforms and Their Physical Applications; Academic Press: London, UK; New York, NY, USA, 1974; ISBN 978-0121674502. [Google Scholar]
- McCrum, N.G.; Read, B.E.; Williams, G. Anelastic and Dielectric Effects in Polymeric Solids; John Wiley and Sons Ltd.: London, UK, 1967; ISBN 978-0471583837. [Google Scholar]
- Magin, R.L. Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 2010, 59, 1586–1593. [Google Scholar] [CrossRef]
- Farsaci, F.; Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. Evaluation of the human blood entropy production: A new thermodynamic approach. J. Ultrasound 2016, 19, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Farsaci, F.; Tellone, E.; Russo, A.; Galtieri, A.; Ficarra, S. Rheological properties of human blood in the network of non-equilibrium thermodynamic with internal variables by means of ultrasound wave perturbation. J. Mol. Liq. 2017, 231, 206–212. [Google Scholar] [CrossRef]
- Treeby, B.E.; Zhang, E.Z.; Thomas, A.S.; Cox, B.T. Measurement of the ultrasound attenuation and dispersion in whole human blood and its components from 0–70 MHz. Ultrasound Med. Biol. 2011, 37, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, P.D. Ultrasound absorption of haemoglobin solution. Biochim. Biophys. Acta 1962, 63, 216–219. [Google Scholar] [CrossRef]
- Filho, M.M.C. The ultrasonic attenuation coefficient for human blood plasma in the frequency range of 7–90 MHz. IEEE. Int. Ultrason Symp. 2004, 3, 2073–2077. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010; ISBN 978-1848163294. [Google Scholar]
- Ciancio, V.; Farsaci, F.; Rogolino, P. Phenomenological approach on wave propagation in dielectric media with two relaxation times. Physica B 2009, 404, 320–324. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsaci, F.; Ficarra, S.; Galtieri, A.; Tellone, E. A New Non-Equilibrium Thermodynamic Fractional Visco-Inelastic Model to Predict Experimentally Inaccessible Processes and Investigate Pathophysiological Cellular Structures. Fluids 2017, 2, 59. https://doi.org/10.3390/fluids2040059
Farsaci F, Ficarra S, Galtieri A, Tellone E. A New Non-Equilibrium Thermodynamic Fractional Visco-Inelastic Model to Predict Experimentally Inaccessible Processes and Investigate Pathophysiological Cellular Structures. Fluids. 2017; 2(4):59. https://doi.org/10.3390/fluids2040059
Chicago/Turabian StyleFarsaci, Francesco, Silvana Ficarra, Antonio Galtieri, and Ester Tellone. 2017. "A New Non-Equilibrium Thermodynamic Fractional Visco-Inelastic Model to Predict Experimentally Inaccessible Processes and Investigate Pathophysiological Cellular Structures" Fluids 2, no. 4: 59. https://doi.org/10.3390/fluids2040059
APA StyleFarsaci, F., Ficarra, S., Galtieri, A., & Tellone, E. (2017). A New Non-Equilibrium Thermodynamic Fractional Visco-Inelastic Model to Predict Experimentally Inaccessible Processes and Investigate Pathophysiological Cellular Structures. Fluids, 2(4), 59. https://doi.org/10.3390/fluids2040059