On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area
Abstract
:1. Introduction
2. Numerical Methods
2.1. Diffusion-Reaction Model
3. Results and Discussion
3.1. Accuracy of the Danckwerts’ Plot Method
3.2. Bias in the Determination of kL and Effect of the Ratio εl/(aGL·δ)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
aGL | Effective gas–liquid interfacial area, mi2·mR−3 |
CA | Concentration of solute gas A within stagnant liquid film, mol·mL−3 |
CA* | Concentration of solute gas A at the gas–liquid interphase, mol·mL−3 |
CA∞ | Concentration of solute gas A in liquid bulk, mol·mL−3 |
CB | Concentration of liquid reactant B within stagnant liquid film, mol·mL−3 |
CB∞ | Concentration of liquid reactant B in liquid bulk, mol·mL−3 |
DA | Diffusion coefficient of component A in the liquid, mL4·mi−2·s−1 |
DB | Diffusion coefficient of component B in the liquid, mL4·mi−2·s−1 |
E | Enhancement factor |
Ei | Enhancement factor for an instantaneous reaction, defined by |
εl | Liquid holdup |
Ha | Hatta number |
kapp | Apparent first-order rate constants, s−1 |
kG | Gas-phase mass-transfer coefficient, mG3·mi−2·s−1 |
kG·aGL | Volumetric gas-phase mass-transfer coefficient, mG3·mR−3·s−1 |
kL | Liquid-phase mass-transfer coefficient, mL3·mi−2·s−1 |
kG·aGL | Volumetric liquid-phase mass-transfer coefficient, mL3·mR−3·s−1 |
k2 | Reaction rate constant for second-order reaction |
R·aGL | Overall rate of absorption, mol·s−1 |
vB | Stoichiometric coefficient of B |
x | Position perpendicular to interface, m |
y | Position parallel to interface, m |
References
- Van Eeten, K.M.P.; Verzicco, R.; Van Der Schaaf, J.; Van Heijst, G.J.F.; Schouten, J.C. A numerical study on gas-liquid mass transfer in the rotor-stator spinning disc reactor. Chem. Eng. Sci. 2015, 129, 14–24. [Google Scholar] [CrossRef]
- De Beer, M.M.; Keurentjes, J.T.F.; Schouten, J.C.; Van Der Schaaf, J. Bubble formation in co-fed gas-liquid flows in a rotor-stator spinning disc reactor. Int. J. Multiph. Flow 2016, 83, 142–152. [Google Scholar] [CrossRef]
- Haseidl, F.; Pottbäcker, J.; Hinrichsen, O. Gas–liquid mass transfer in a rotor–stator spinning disc reactor: Experimental study and correlation. Chem. Eng. Process. Process Intensif. 2016, 104, 181–189. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, C.; Liu, H. Mass transfer in a rotating packed bed with various radii of the bed. Ind. Eng. Chem. Res. 2005, 44, 7868–7875. [Google Scholar] [CrossRef]
- Garcia, G.E.C.; Van Der Schaaf, J.; Kiss, A.A. A review on process intensification in higee distillation. J. Chem. Technol. Biotechnol. 2017, 92, 1136–1156. [Google Scholar] [CrossRef]
- Danckwerts, P.V. Gas-Liquid Reactions; Mcgraw-Hill Book Co.: New York, NY, USA, 1970. [Google Scholar]
- Rejl, J.F.; Linek, V.; Moucha, T.; Valenz, L. Methods standardization in the measurement of mass-transfer characteristics in packed absorption columns. Chem. Eng. Res. Des. 2009, 87, 695–704. [Google Scholar] [CrossRef]
- Hegely, L.; Roesler, J.; Alix, P.; Solaize, D.; Rouzineau, D.; Meyer, M. Absorption methods for the determination of mass transfer parameters of packing internals: A literature review. AIChE J. 2017, 63. [Google Scholar] [CrossRef]
- Last, W.; Stichlmair, J. Determination of mass transfer parameters by means of chemical absorption. Chem. Eng. Technol. 2002, 25, 385–391. [Google Scholar] [CrossRef]
- Hoffmann, A.; Mackowiak, J.F.; Gorak, A.; Haas, M.; Loning, J.-M.; Runowski, T.; Hallenberger, K. Standardization of mass transfer measurements. a basis for the description of absorption processes. Chem. Eng. Res. Des. 2007, 85, 40–49. [Google Scholar] [CrossRef]
- Danckwerts, P.V.; Kennedy, A.M.; Roberts, D. Kinetics of CO2 absorption in alkaline solutions—II. Absorption in packed column and tests of surface-renewal models. Chem. Eng. Sci. 1963, 18, 63–72. [Google Scholar] [CrossRef]
- Linek, V.; Kordac, M.; Moucha, T. Mechanism of mass transfer from bubbles in dispersions part II: Mass transfer coefficients in stirred gas–liquid reactor and bubble column. Chem. Eng. Process. 2005, 44, 121–130. [Google Scholar] [CrossRef]
- Strumillo, C.; Kundra, T. Interfacial area in three-phase fluidized beds. Chem. Eng. Sci. 1976, 32, 229–232. [Google Scholar] [CrossRef]
- Maalej, S.; Benadda, B.; Otterbein, M. Interfacial area and volumetric mass transfer coefficient in a bubble reactor at elevated pressures. Chem. Eng. Sci. 2003, 58, 2365–2376. [Google Scholar] [CrossRef]
- Gourich, B.; Vial, C.; Soulami, M.B.; Zoulalian, A.; Ziyad, M. Comparison of hydrodynamic and mass transfer performances of an emulsion loop-venturi reactor in cocurrent downflow and upflow configurations. Chem. Eng. J. 2008, 140, 439–447. [Google Scholar] [CrossRef]
- Cents, A.H.G.; Brilman, D.W.F.; Versteeg, G.F. Gas absorption in an agitated gas-liquid-liquid system. Chem. Eng. Sci. 2001, 56, 1075–1083. [Google Scholar] [CrossRef]
- Hatta, S. Technological Reports of Tohoku University; Tohoku University: Sendai, Japan, 1932; Volume 10, p. 119. [Google Scholar]
- Whitman, W.G. The two-film theory of gas absorption. Int. J. Heat Mass Transf. 1962, 5, 429–433. [Google Scholar] [CrossRef]
- Pohorecki, R.; Moniuk, W.; Zdrojkowski, A. Hydrodynamics of a bubble column under elevated pressure. Chem. Eng. Sci. 1999, 54, 5187–5193. [Google Scholar] [CrossRef]
- Kulkarni, A.A.; Joshi, J.B.; Kumar, V.R.; Kulkarni, B.D. Simultaneous measurement of hold-up profiles and interfacial area using lda in bubble columns: predictions by multiresolution analysis and comparison with experiments. Chem. Eng. Sci. 2001, 56, 6437–6445. [Google Scholar] [CrossRef]
- Bouaifi, M.; Hebrard, G.; Bastoul, D.; Roustan, M. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas–liquid reactors and bubble columns. Chem. Eng. Process. 2001, 40, 97–111. [Google Scholar] [CrossRef]
- Sahay, B.N.; Sharma, M.M. Effective interfacial area and liquid and gas side mass transfer coefficients in a packed column. Chem. Eng. Sci. 1973, 28, 41–47. [Google Scholar] [CrossRef]
- Shulman, H.L.; Ulrich, C.F.; Wells, N. Performance of packed columns. AIChE J. 1955, 1, 247–253. [Google Scholar] [CrossRef]
- Piché, S.; Grandjean, B.P.A.; Larachi, F. Reconciliation procedure for gas–liquid interfacial area and mass-transfer coefficient in randomly packed towers. Ind. Eng. Chem. Res. 2002, 41, 4911–4920. [Google Scholar] [CrossRef]
- Zheng, X.; Chu, G.; Kong, D.; Luo, Y.; Zhang, J.; Zou, H. Mass transfer intensification in a rotating packed bed with surface-modified nickel foam packing. Chem. Eng. J. 2016, 285, 236–242. [Google Scholar] [CrossRef]
- Luo, Y.; Chu, G.; Zou, H.; Zhao, Z.; Dudukovic, M.P.; Chen, J. Gas–liquid effective interfacial area in a rotating packed bed. Ind. Eng. Chem. Res. 2012. [Google Scholar] [CrossRef]
- Burns, J.R.; Jamil, J.N.; Ramshaw, C. Process intensification: Operating characteristics of rotating packed beds—Determination of liquid hold-up for a high-voidage structured packing. Chem. Eng. Sci. 2000, 55, 2401–2415. [Google Scholar] [CrossRef]
- Van Elk, E.P.; Knaap, M.C.; Versteeg, G.F. Application of the penetration theory for gas-liquid mass transfer without liquid bulk. differences with systems with a bulk. Chem. Eng. Res. Des. 2007, 85, 516–524. [Google Scholar] [CrossRef] [Green Version]
- Cents, A.H.G.; De Bruijn, F.T.; Brilman, D.W.F.; Versteeg, G.F. Validation of The Danckwerts-plot technique by simultaneous chemical absorption of CO2 and physical desorption of O2. Chem. Eng. Sci. 2005, 60, 5809–5818. [Google Scholar] [CrossRef]
Equipment | εl (mL3·mR−3) | aGL (mi2·mL−3) | kL (mL3·mi−2·s−1) | (εl/aGL·δ) | References |
---|---|---|---|---|---|
Bubble Column | 0.90 | 50 | 1.0 × 10−3 | 1.0 × 104 | [19,20,21] |
1.0 × 10−4 | 1.0 × 103 | ||||
Packed Bed | 0.15 | 150 | 1.0 × 10−3 | 5.6 × 102 | [22,23,24] |
1.0 × 10−4 | 5.6 × 101 | ||||
Rotating Packed Bed | 0.03 | 700 | 1.0 × 10−3 | 2.4 × 101 | [25,26,27] |
1.0 × 10−4 | 2.4 × 10 |
Parameter | Value |
---|---|
DA (mL4·mi−2·s−1) | 1.80 × 10−9 |
DB (mL4·mi−2·s−1) | 3.10 × 10−9 |
CB∞ (mol·mL−3) | 1.00 × 103 |
CA* (mol·mL−3) | 3.90 × 10−1 |
Ei | 2.18 × 102 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes Garcia, G.E.; Van Eeten, K.M.P.; De Beer, M.M.; Schouten, J.C.; Van der Schaaf, J. On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area. Fluids 2018, 3, 18. https://doi.org/10.3390/fluids3010018
Cortes Garcia GE, Van Eeten KMP, De Beer MM, Schouten JC, Van der Schaaf J. On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area. Fluids. 2018; 3(1):18. https://doi.org/10.3390/fluids3010018
Chicago/Turabian StyleCortes Garcia, German E., Kevin M. P. Van Eeten, Michiel M. De Beer, Jaap C. Schouten, and John Van der Schaaf. 2018. "On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area" Fluids 3, no. 1: 18. https://doi.org/10.3390/fluids3010018
APA StyleCortes Garcia, G. E., Van Eeten, K. M. P., De Beer, M. M., Schouten, J. C., & Van der Schaaf, J. (2018). On the Bias in the Danckwerts’ Plot Method for the Determination of the Gas–Liquid Mass-Transfer Coefficient and Interfacial Area. Fluids, 3(1), 18. https://doi.org/10.3390/fluids3010018