Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition
Abstract
:1. Introduction
2. Physical Model
3. Mathematical Equations
4. Grid Dependence and Validation
5. Results and Discussion
5.1. Effect of Location of Magnet on Temperature
5.2. Effect of Location of Magnet on Flow Field
5.3. Effect of Location of Magnet on Buoyancy Force
5.4. Effect of Location of Magnet on Nu
6. Conclusions
- The location of magnet had a significant effect on the distribution of Nu on the hot wall, especially on the lower part of the hot wall. The maximum local Nu on the hot wall reached up to 2.9, 5.6 and 7.7 for Br = 1.0 T, 2.0 T and 3.0 T, respectively.
- The value of Nu on the upper part of the hot wall and on the lower part of the cold wall was less than 1.0, due to the suppression of conduction with a much lower temperature gradient caused by the thermomagnetic convection.
- The optimum location of the magnet exists in terms of the largest value of Nu. The optimum location of the magnet ranged from xm/L = 0.5 to 0.36, when the magnetic flux density increased from 0.5 T to 3.0 T. Compared with the case of xm/L = 1.0, the average value of Nu in the enclosure could be increased by up to 77% by optimizing the location of the magnet for the studied range of parameters.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
A | vector potential (T·m) |
B | magnetic flux density (T) |
Br | residual magnetic flux density (T) |
C | Curie constant (K·m3/kg) |
c | cold wall |
cp | specific heat at constant pressure (kJ/(kg·K)) |
fm | magnetizing force (N/m3) |
F | magnetic force (N/m3) |
Fx | magnetic buoyancy force along x-direction (N/m3) |
Fz | magnetic buoyancy force along z-direction (N/m3) |
h | hot wall |
L | length of cavity (m) |
M | magnetization (A/m) |
Nu | Nusselt number (-) |
p | pressure (Pa) |
Pr | Prandtl number (-) |
r | unit vector (-) |
Ra | Rayleigh number (-) |
Rg | Gas constant (J/(kg·K)) |
T | temperature (K) |
u | velocity vector (m/s) |
v | volume (m3) |
x, z | coordinate (m) |
xm | location of magnet |
α | thermal diffusivity of gas (m2/s) |
β | volumetric thermal expansion coefficient (1/K) |
λ | thermal conductivity of oxygen (W/(m·K)) |
μ | dynamic viscosity (Pa·s) |
μm | magnetic permeability of free space (H/m) |
ν | kinematic viscosity (m2/s) |
ρ | density (kg/m3) |
χ | mass magnetic susceptibility of oxygen (m3/kg) |
0 | reference state |
References
- Das, D.; Roy, M.; Basak, T. Studies on natural convection within enclosures of various (non-square) shapes—A review. Int. J. Heat Mass Transf. 2017, 106, 356–406. [Google Scholar] [CrossRef]
- Joudi, K.A.; Hussein, I.A.; Farhan, A.A. Computational model for a prism shaped storage solar collector with a right triangular cross section. Energy Convers. Manag. 2004, 45, 391–409. [Google Scholar] [CrossRef]
- Kalaiselvam, S.; Veerappan, M.; Aaron, A.A.; Iniyan, S. Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation. Int. J. Therm. Sci. 2008, 47, 858–874. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Ganguly, R.; Sen, S.; Puri, I.K. A scaling analysis to characterize thermomagnetic convection. Int. J. Heat Mass Transf. 2005, 48, 3485–3492. [Google Scholar] [CrossRef]
- Bahiraei, M.; Hangi, M. Flow and heat transfer characteristics of magnetic nanofluids: A Review. J. Magn. Magn. Mater. 2015, 374, 125–138. [Google Scholar] [CrossRef]
- Krakov, M.S.; Nikiforov, I.V. To the influence of uniform magnetic field on thermomagnetic convection in square cavity. J. Magn. Magn. Mater. 2002, 252, 209–211. [Google Scholar] [CrossRef]
- Krakov, M.S.; Nikiforov, I.V. Thermomagnetic convection in a porous enclosure in the presence of outer uniform magnetic field. J. Magn. Magn. Mater. 2005, 289, 278–280. [Google Scholar] [CrossRef]
- Tangthieng, C.; Finlayson, B.A.; Maulbetsch, J.; Cader, T. Heat transfer enhancement in ferrofluids subjected to steady magnetic fields. J. Magn. Magn. Mater. 1999, 201, 252–255. [Google Scholar] [CrossRef]
- Yu, P.X.; Qiu, J.X.; Qin, Q.; Tian, Z.F. Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 2013, 67, 1131–1144. [Google Scholar] [CrossRef]
- Tagawa, T.; Shigemitsu, R.; Ozoe, H. Magnetizing force modeled and numerically solved for natural convection of air in a cubic enclosure: Effect of the direction of the magnetic field. Int. J. Heat Mass Transf. 2002, 45, 267–277. [Google Scholar] [CrossRef]
- Vatani, A.; Woodfield, P.L.; Nguyen, N.T.; Dao, D.V. Thermomagnetic convection around a current-carrying wire in ferrofluid. J. Heat Transf. 2017, 139, 104502. [Google Scholar] [CrossRef]
- Vatani, A.; Woodfield, P.L.; Nguyen, N.T.; Dao, D.V. Onset of thermomagnetic convection around a vertically oriented hot-wire in ferrofluid. J. Magn. Magn. Mater. 2018, 456, 300–306. [Google Scholar] [CrossRef]
- Jiang, C.W.; Shi, E.; Hu, Z.M.; Zhu, X.F.; Xie, N. Numerical simulation of thermomagnetic convection of air in a porous square enclosure under a magnetic quadrupole field using LTNE models. Int. J. Heat Mass Transf. 2015, 91, 98–109. [Google Scholar] [CrossRef]
- Yang, L.J.; Ren, J.X.; Song, Y.Z.; Guo, Z.Y. Free convection of a gas induced by a magnetic quadrupole field. J. Magn. Magn. Mater. 2003, 261, 377–384. [Google Scholar] [CrossRef]
- Song, K.W.; Tagawa, T. Thermomagnetic convection of oxygen in a square enclosure under non-uniform magnetic field. Int. J. Therm. Sci. 2018, 125, 52–65. [Google Scholar] [CrossRef]
- Ashouri, M.; Ebrahimi, B.; Shafii, M.B.; Saidi, M.H.; Saidi, M.S. Correlation for Nusselt number in pure magnetic convection ferrofluid flow in a square cavity by a numerical investigation. J. Magn. Magn. Mater. 2010, 322, 3607–3613. [Google Scholar] [CrossRef]
- Szabo, P.S.B.; Früh, W.G. The transition from natural convection to thermomagnetic convection of a magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 2018, 447, 116–123. [Google Scholar] [CrossRef]
- Braithwaite, D.; Beaugnon, E.; Tournier, R. Magnetically controlled convection in a paramagnetic fluid. Nature 1991, 354, 134–136. [Google Scholar] [CrossRef]
- De Vahl Davis, G. Natural convection of air in a square cavity: A bench mark numerical solution. Int. J. Numer. Methods Fluids 1983, 3, 249–264. [Google Scholar] [CrossRef]
Br | 0.5 T–3.0 T | μ | 20.65 × 10−6 Pa·s |
xm/L | 0.0–1.0 | λ | 2.65 × 10−2 W/(m·K) |
Th | 308.6 K | α | 22.136 × 10−6 m2/s |
Tc | 300 K | χ | 1.738 × 10−6 m3/kg |
Pr | 0.717 | T | 300.0 K |
ρ | 1.301 kg/m3 | β | 1/300.0 (1/K) |
ν | 15.878 × 10−6 m2/s | μm | 4π × 10−7 H/m |
Nusselt Number | De Vahl Davis [19] | Present | Maximum Error |
---|---|---|---|
Nu | 4.519 | 4.521 | 0.05% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Wu, S.; Tagawa, T.; Shi, W.; Zhao, S. Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition. Fluids 2019, 4, 49. https://doi.org/10.3390/fluids4010049
Song K, Wu S, Tagawa T, Shi W, Zhao S. Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition. Fluids. 2019; 4(1):49. https://doi.org/10.3390/fluids4010049
Chicago/Turabian StyleSong, Kewei, Shuai Wu, Toshio Tagawa, Weina Shi, and Shuyun Zhao. 2019. "Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition" Fluids 4, no. 1: 49. https://doi.org/10.3390/fluids4010049
APA StyleSong, K., Wu, S., Tagawa, T., Shi, W., & Zhao, S. (2019). Thermomagnetic Convection of Paramagnetic Gas in an Enclosure under No Gravity Condition. Fluids, 4(1), 49. https://doi.org/10.3390/fluids4010049