Computation of Kinematic and Magnetic α-Effect and Eddy Diffusivity Tensors by Padé Approximation
Abstract
:1. Introduction
2. Calculation of Eddy Viscosity
2.1. Eddy Viscosities and Multiscale Techniques
2.2. Eddy Viscosity Expansion in Powers of
2.3. Results of Calculations
3. Computation of the Magnetic -Effect Tensor
3.1. The Multiscale Formalism Revealing the Magnetic -Effect
3.2. Padé Approximation
3.3. Numerical Results
3.3.1. Approximation by the Algorithm I
- •
- Pseudospectral methods used in the computation of space-periodic solutions to the auxiliary problems (14) and their coefficients (22) involve fast Fourier transforms. These algorithms are very efficient. However, they operate by computing various linear combinations of the Fourier coefficients. Typically, at least for moderate molecular diffusivities, the energy spectra of these fields decay fast. In a sum of a large coefficient with a small (in absolute values) one, a significant part of the accuracy of the smaller coefficient is lost.
- •
- Insufficiency of the spatial resolution can result in significant numerical errors. We may note that while increasing the resolution improves solutions, it aggravates the FFT accuracy problems.
3.3.2. Approximation by the Algorithm II
4. Computation of the Magnetic Eddy Diffusivity Tensor
4.1. The Multiscale Formalism Revealing the Magnetic Eddy Diffusivity
4.2. Padé Approximation
4.3. Numerical Results
- are real;
- the numbers and are even;
- and are symmetric in (i.e., ), and is antisymmetric in (i.e., ), where .
5. Conclusions
- of Froissart doublets in approximants of tensor entries and their elimination (the approach of [36] may prove useful for monitoring the absence of the doublets);
- of the interval in molecular diffusivity, where the approximation is sufficiently accurate;
- of the realistic orders of a Padé approximant, for which the length of such intervals is close to the maximum.
Author Contributions
Funding
Conflicts of Interest
References
- Forsythe, G.E.; Malcolm, M.A.; Moler, C.B. Computer Methods for Mathematical Computations; Prentice-Hall: Englewood Cliffs, UK, 1977. [Google Scholar]
- Baker, G.A., Jr. Quantitative Theory of Critical Phenomena; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Baker, G.A., Jr.; Graves-Morris, P. Padé Approximants; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Gilewicz, J. Approximants de Padé; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1978; Volume 667. [Google Scholar]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in Fortran; The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1993. [Google Scholar]
- Starr, V.P. Physics of Negative Viscosity Phenomena; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Moffatt, H.K. Magnetic Field Generation in Electrically Conducting Fluids; Cambridge University Press: New York, NY, USA, 1978. [Google Scholar]
- Parker, E.N. Hydrodynamic dynamo models. Astrophys. J. 1955, 122, 293–314. [Google Scholar] [CrossRef]
- Krause, F.; Rädler, K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory; Academic-Verlag: Berlin, Germany, 1980. [Google Scholar]
- Steenbeck, M.; Krause, F.; Rädler, K.-H. A calculation of the mean electromotive force in an electrically conducting fluid in turbulent motion, under the influence of Coriolis forces. Z. Naturforsch. 1966, 21, 369–376. [Google Scholar]
- Dubrulle, B.; Frisch, U. Eddy viscosity of parity-invariant flow. Phys. Rev. A 1991, 43, 5355–5364. [Google Scholar] [CrossRef] [PubMed]
- Lanotte, A.; Noullez, A.; Vergassola, M.; Wirth, A. Large-scale dynamo by negative magnetic eddy diffusivities. Geophys. Astrophys. Fluid Dyn. 1999, 91, 131–146. [Google Scholar] [CrossRef]
- Roberts, G.O. Spatially periodic dynamos. Philos. Trans. R. Soc. Lond. A 1970, 266, 535–558. [Google Scholar] [CrossRef]
- Roberts, G.O. Dynamo action of fluid motions with two-dimensional periodicity. Philos. Trans. R. Soc. Lond. A 1972, 271, 411–454. [Google Scholar] [CrossRef]
- Vishik, M.M. Periodic dynamo. In Mathematical Methods in Seismology and Geodynamics; (Computational Seismology, issue 19); Keilis-Borok, V.I., Levshin, A.L., Eds.; Nauka: Moscow, Russia, 1986; English Translation: Computational Seismology; Allerton Press: New York, NY, USA, 1987; Volume 19, pp. 176–209. [Google Scholar]
- Vishik, M.M. Periodic dynamo. II. In Numerical Modelling and Analysis of Geophysical Processes; (Computational Seismology, issue 20); Keilis-Borok, V.I., Levshin, A.L., Eds.; Nauka: Moscow, Russia, 1987; pp. 12–22, English Translation: Computational Seismology; Allerton Press: New York, NY, USA, 1988; Volume 20, pp. 10–22. [Google Scholar]
- Zheligovsky, V.A. Large-Scale Perturbations of Magnetohydrodynamic Regimes: Linear and Weakly Nonlinear Stability Theory; Lecture Notes Phys.; Springer: Heidelberg, Germany, 2011; Volume 829. [Google Scholar]
- Chertovskih, R.; Zheligovsky, V. Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer. Physica D 2015, 313, 99–116. [Google Scholar] [CrossRef] [Green Version]
- Andrievsky, A.; Brandenburg, A.; Noullez, A.; Zheligovsky, V. Negative magnetic eddy diffusivities from test-field method and multiscale stability theory. Astrophys. J. 2015, 811, 135. [Google Scholar] [CrossRef]
- Rasskazov, A.; Chertovskih, R.; Zheligovsky, V. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid. Phys. Rev. E 2018, 97, 043201. [Google Scholar] [CrossRef]
- Andrievsky, A.; Chertovskih, R.; Zheligovsky, V. Pointwise vanishing velocity helicity of a flow does not preclude magnetic field generation. Phys. Rev. E 2019, 99, 033204. [Google Scholar] [CrossRef] [Green Version]
- Andrievsky, A.; Chertovskih, R.; Zheligovsky, V. Negative magnetic eddy diffusivity due to oscillogenic α-effect. Physica D 2019. in submitted. [Google Scholar] [CrossRef]
- Zheligovsky, V.A.; Podvigina, O.M.; Frisch, U. Dynamo effect in parity-invariant flow with large and moderate separation of scales. Geophys. Astrophys. Fluid Dyn. 2001, 95, 227–268. [Google Scholar] [CrossRef] [Green Version]
- Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Lindborg, E. Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech. 1999, 388, 259–288. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.I. Eddy motion in the atmosphere. Philos. Trans. R. Soc. A 1915, 215, 1–26. [Google Scholar] [CrossRef]
- Frisch, U.; She, Z.S.; Sulem, P.L. Large-scale flow driven by the anisotropic anisotropic kinetic alpha effect. Physica D 1987, 28, 382–392. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Theory of Elasticity, 3rd ed.; Elsevier: New York, NY, USA, 2007. [Google Scholar]
- Cummins, P.F.; Holloway, G. Reynolds stress and eddy viscosity in direct numerical simulations of sheared two-dimensional turbulence. J. Fluid Mech. 2010, 657, 394–412. [Google Scholar] [CrossRef]
- Gama, S.; Vergassola, M.; Frisch, U. Negative eddy viscosity in isotropically forced two-dimensional flow: Linear and nonlinear dynamics. J. Fluid Mech. 1994, 260, 95–126. [Google Scholar] [CrossRef]
- Vergassola, M.; Gama, S.; Frisch, U. Proving the existence of negative isotropic eddy viscosity. In Theory of Solar and Planetary Dynamos; Proctor, M.R.E., Matthews, P.C., Rucklidge, A.M., Eds.; Cambridge University Press: New York, NY, USA, 1993; pp. 321–327. [Google Scholar]
- Hastings, C.; Mischo, K.; Morrison, M. Hands-on Start to Wolfram Mathematica and Programming with the Wolfram Language; Wolfram Media, Inc.: Champaign, IL, USA, 2015. [Google Scholar]
- Podvigina, O.; Zheligovsky, V.; Frisch, U. The Cauchy–Lagrangian method for numerical analysis of Euler flow. J. Comp. Phys. 2016, 306, 320–342. [Google Scholar] [CrossRef]
- Zheligovsky, V. Numerical solution of the kinematic dynamo problem for Beltrami flows in a sphere. J. Sci. Comp. 1993, 8, 41–68. [Google Scholar] [CrossRef]
- Gonnet, P.; Güttel, S.; Trefethen, L.N. Robust Padé approximation via SVD. SIAM Rev. 2013, 55, 101–117. [Google Scholar] [CrossRef]
- Beckermann, B.; Labahn, G.; Matos, A.C. On rational functions without Froissart doublets. Numer. Math. 2018, 138, 615–633. [Google Scholar] [CrossRef]
n | Coefficient (Exact Rational Number) |
---|---|
1 | |
3 | |
5 | |
7 | |
9 | |
11 | |
⋮ | ⋮ |
39 |
tol | ||||||
---|---|---|---|---|---|---|
5 | 5 | 6 | 5 | 5 | 5 | |
6 | 6 | 6 | 6 | 6 | 6 | |
7 | 7 | 8 | 7 | 7 | 7 | |
8 | 8 | 9 | 8 | 8 | 8 | |
9 | 8 | 10 | 10 | 9 | 9 | |
10 | 10 | 11 | 10 | 10 | 10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gama, S.M.A.; Chertovskih, R.; Zheligovsky, V. Computation of Kinematic and Magnetic α-Effect and Eddy Diffusivity Tensors by Padé Approximation. Fluids 2019, 4, 110. https://doi.org/10.3390/fluids4020110
Gama SMA, Chertovskih R, Zheligovsky V. Computation of Kinematic and Magnetic α-Effect and Eddy Diffusivity Tensors by Padé Approximation. Fluids. 2019; 4(2):110. https://doi.org/10.3390/fluids4020110
Chicago/Turabian StyleGama, Sílvio M.A., Roman Chertovskih, and Vladislav Zheligovsky. 2019. "Computation of Kinematic and Magnetic α-Effect and Eddy Diffusivity Tensors by Padé Approximation" Fluids 4, no. 2: 110. https://doi.org/10.3390/fluids4020110
APA StyleGama, S. M. A., Chertovskih, R., & Zheligovsky, V. (2019). Computation of Kinematic and Magnetic α-Effect and Eddy Diffusivity Tensors by Padé Approximation. Fluids, 4(2), 110. https://doi.org/10.3390/fluids4020110