1. Introduction
Membrane filters are used in various industries and one of their most significant applications is water purification [
1,
2], where particles are removed from the water flow by applying micro-filtration. In particular, the reverse osmosis membrane is a great technique applied in water treatment [
3]. Membrane filtration also exerts an important role in biotech industry in several aspects, for example, they are used in artificial kidneys for hemodialysis process [
4]. Other applications include fruit juice processing [
5], enhanced oil recovery [
6], and recycling microorganism [
7], among many others. Membrane filters have various structures when they are used in different applications and industries (see
Figure 1), but generally are considered to be porous media, with characterized morphology, pore size and shape.
Membrane filters operations can be categorized according to their driving forces, such as pressure, concentration and electric potential gradient [
11]. There are two classical constraint conditions regarding the driving forces: constant pressure across the membrane and constant flux within the membrane. Many researchers have studied filtration performance in these two regimes and even the transition between them. For example, Ho and Zydney [
12] formulated a mathematical model of filtration under constant pressure, while Chellam and Xu [
13] studied the constant flow scenario. Bolton et at. [
14] proposed a model considering the transition between these two regimes. Moreover, two types of flow geometries in membrane processes are commonly used: (i) crossflow/tangential flow and (ii) dead-end filtrations [
15]. The first one relates to the flow which is parallel to the membrane surface, whereas the flow is perpendicular to the membrane in the latter case. In both types, during the process of filtration, membrane fouling is inevitably taking place at the same time. Consequently, flow rate will decrease during the filtration process and membrane performance will be negatively affected [
16,
17,
18]. There are three frequently studied mechanisms of fouling: (i) adsorption of small particles on membrane pores wall; (ii) blocking at the inlet of the pores due to sieving of particles larger than the pores size; (iii) cake formation when pores are blocked and small particles deposit on, adding extra resistance to the membrane. In this paper, we study flow in a dead-end filtration membrane, which is driven by constant pressure imposed across the membrane, considering the first two mechanisms of fouling.
Different models regarding the process of filtration and fouling are implemented by researchers up to now. Grenier et al. [
19] studied the flow evolution in dead-end filtration and quantified the predominate fouling mechanisms in each stage of filtration from experimental data. The paper identified that the two prevailing mechanisms are blocking by large particles and cake formation. However, this work simply assumes that filtration can be separated into different successive stages and only one type of fouling is occurring at a time. It also neglected the effect of small particle deposition on the membrane pores’ wall, although this happens during the whole filtration process. A similar problem was also considered by Goldrick et al. [
20] under constant pressure filtration process, where a combined fouling model was employed. These authors concluded that the cake-absorption fouling model can best describe the fouling mechanisms observed by data-sets of experiments; however, particle diffusion was not considered in the model. Sanaei and Cummings [
21] proposed a simplified model of membrane filters that only consider particle advection and electrostatic interactions between membrane pores and particles, which cause the particles to adhere to the membrane. In addition, in the works by Dalwadi et al. [
22] and Griffiths et al. [
23], small particle diffusion is also not considered during the filtration process. Matthies et al. [
24] have recently developed a model based on method of asymptotic homogenization to study an up-scaled approach to virtually investigate permeation of fluids through a real porous filter membrane with a heterogeneous micro-structure. In this work, despite diffusion being neglected, a very rigorous approach of including morphological information into a very simple model is demonstrated and the results were validated and compared to experimental data. On the other hand, according to Chen et al. [
25], it is confirmed that particle diffusion has a key role in the membrane fouling. According to Taylor [
26], dispersion in feed solution takes place when the flow is slow under a combining manipulation of convection and diffusion. Therefore, in slow filtration process, or during the late stages of filtration when the flow rate is naturally very low due to high level of fouling, particle diffusion could play an important role. In this paper, we investigate the possible effects that particle diffusion can have on the performance of the filtration process. To characterize whether particle diffusion should be taken into consideration or not in a filtration process, we will introduce Péclet number, defined as the ratio of advective transport rate to that of diffusive. Note, when the flow of feed solution is slow, Péclet number is small and then particle diffusion must be considered.
The goals of the present paper are to study the effects of particle diffusion on membrane filters performance and to derive a continuum model, capable of simulating particle diffusion and advection in a filtration process. Therefore, we (i) discuss the effect of particles diffusion on the evolution of pore radius; (ii) compare the change of particle concentration and pore radius evolution during filtration process (with large and small Péclet numbers); and (iii) make a prediction about what kind of membrane filter should be employed to achieve a particular optimum filtration performance. The paper is laid out as follows: in
Section 2, we introduce a mathematical model for flow within a single pore of a membrane, considering fouling by both large and small particles. In
Section 3, we derive the non-dimensional advection-diffusion equation for small particles based on the order of Péclet number. Some simulations, regarding how membrane features and flow affecting the filtration process, are presented in
Section 4. Finally, we conclude in
Section 5 with a discussion of our model and results in the context of real membrane filters.
4. Results
We present and illustrate some simulations of the model (
15)–(
20) introduced in
Section 3. We first demonstrate how the membrane pore velocity, small particle concentration and pore radius evolve during filtration process; then we show how filtration outcomes change by varying Péclet number and the stickiness coefficient
; and finally we will find the optimum pore profile for a chosen performance measure.
Our model contains the following dimensionless parameters:
, which describes the pore radius shrinkage rate;
, characterizes the additional resistance formed when a large particle sits over a pore;
, which is the dimensionless stickiness coefficient, capturing the physics of attraction between particles and the pore wall; and Pe, represents the degree of diffusion effects in filtration. While conducting the simulations, we follow the same assumptions on values of dimensionless parameters proposed in [
21]. Therefore, we fix the additional resistance
and distribution of large particle sizes
in (
17), which means all of the large particles are larger than the pores inlet and cannot enter in. Originally, we set
and
, but later we will change the values of
and
to gain insight into filtration performance stemming from either the change of membrane or properties of particles. Since
and
are correlated by the dimensional stickiness coefficient
, whenever
varies (due to change in membrane and particles properties or
), we need to keep
(see (
18) and (
19)). In reality, the values of these parameters vary in different applications and depend on the properties of the feed solution; however, we believe that our models can give reliable predictions when detailed data from industries are provided. We consider a uniform initial pore profile where the initial pore radius is characterized by
. Although we run simulations for uniform pore profiles, our model can be applied to any axisymmetric pore. Please note that in this paper, we assume the filtration occurs in the slow flow rate regime, where the particles diffusion plays a main role in the filtration process.
We conduct our numerical simulations to solve the model until the pore shrinks to zero (
), which means that the membrane is no longer permeable and the flux through it drops to zero at the stopping time
. The numerical scheme employed is center in space, backward in time, with second-order accurate finite difference spatial discretization of the equations, and an implicit time step in the pore-blocking Equation (
19). Simulations for the model (
15)–(
20) summarized in
Section 3 have been performed and we present results for the model regarding the scenarios when diffusion effect is taken into account as discussed in the previous section.
The main results are shown in
Figure 3: we simulate the model for the uniform initial profiles
, with parameters
,
and
. The Péclet number is chosen to be 2, which describes the ratio of advective to diffusive transport rates. Please note that when
, we only consider the effect of particle advection.
Figure 3a,c show the cross-sectionally averaged pore velocity
(when
and
respectively), while
Figure 3b,d show the pore radius
and the concentration of small particles
at various times up to the final blocking time
(when
and
respectively). A notable striking feature of these plots is that the pore shrinks at a higher rate at the pore inlet than outlet, and the pore closure occurs first at the upstream membrane surface. This is consistent with the plot regarding the pore velocity
shown in
Figure 3a,c. At the beginning of the filtration process, the pore velocity is constant for the uniform channel, but it promptly changes into a non-uniform one, with different pore velocity along the pore depth, representing the effect of continuity (see (
15)). The main feature of
Figure 3d, where only particle advection is considered (
), is that the shrinkage mainly occurs at the pore inlet, more than what shown in
Figure 3b, demonstrating a significant change due to diffusion effects in the filtration process. The other consequence of diffusion effects is that more particles escape during the filtration process (see
Figure 3b), thus the particle concentration at the pore outlet increases a lot compared to the results shown in
Figure 3d, where diffusion has no role there. Furthermore, comparing these two plots describing the shrinkage of pore radius brings us to this conclusion that by considering diffusion effects, the pore shrinks more in a uniform way along the axial direction, noticing that the pore outlet shrinks remarkably compared with that of advection simulation. These changes are also correlated with the model (
19) assuming that the speed of radius shrinkage is proportional to particle concentration at depth
x, meaning that for larger amount of particle concentration, the pore radius shrinks more.
Considering the effects of particles diffusion, we would study how variation of the axial diffusion influences the filtration performance. We consider the particle concentration at the pore outlet and total throughput (definition is given below) as indices to reflect the filtration performance. The blue curve in
Figure 4a presents how the inverse of Péclet number
, affects the initial particle concentration at the pore outlet
. For a clearer illustration of the graph tendency, we choose
ranging from 0 to 8. This curve demonstrates that the initial particle concentration at the pore outlet increases significantly with
. This mainly stems from the fact that the inverse of Péclet number represents the strength of particles axial diffusion, saying that more particles would diffuse out of the pore for larger values of
. In particular, when
, the corresponding particle concentration at pore outlet is 0.07, describing the case that only particle advection is being considered. This number is consistent with the results shown in
Figure 3d. The red curve in
Figure 4a describes how total volume of filtrate processed (so-called total
throughput) varies with the inverse of Péclet number. Please note that the flux is directly proportional to the averaged Darcy velocity, therefore we define our dimensionless flux by
; throughput is then defined by
. The results here show that the total throughput
, decreases as
increases.
Figure 4b shows the relationship between the particle concentration at the membrane downstream (pore outlet) and the total throughput
. Each curve in the figure corresponds to a different value of the inverse of Péclet number
, shown in the legend. The intersection of each curve and the y-axis represents the initial particle concentration at the pore outlet. As the filtration process proceeds, the throughput increases and the particle concentration at the pore outlet decreases to zero gradually. Comparing these curves in
Figure 4b illustrates that the particle concentration increases as the Péclet number decreases. Meanwhile, as we increase
, the total throughput decreases, shown as a smaller intercept with the x-axis. These observations are consistent with the ones shown in
Figure 4a. In addition,
Figure 4c,d are similar to
Figure 4a,c respectively, for several different values of
, which characterizes the additional resistance formed when a large particle sits over a pore. Please note that in
Figure 4c,
is used. The curves with
in these two figures, represent the filtration scenario with no large particles included. These curves in
Figure 4c,d, collectively show that the initial particle concentration at the pore outlet
, does not change with
, while the particle concentration at the pore outlet at latter times (
,
) and the total throughput
both decrease as
increases. The effects of large particles on the filtration performance were studied in detail in [
21].
As demonstrated above, particles concentration at the pore outlet increases with the axial particle diffusion. Therefore, we may need to improve membrane properties whenever the filtration application requires less particles concentration at the membrane outlet. To do so, we study the influence of stickiness coefficient
to reduce particles concentration in the filtrate. The two dimensionless parameters involved in our model
and
depend on
, therefore they are not independent and should be varied proportionally at the same time if
varies, i.e.,
. The change in the stickiness coefficient
presents the variation of the membrane material or the particle properties in the feed solution. The small values of
correspond to a weak membrane-particle and-particle-particle attraction, whereas the larger values represent strong attraction between membrane and particles in the feed solution.
Figure 5 shows that membranes with larger values of
give less particle concentration at the outlet with trade-off of having less total throughput. Hence, the type of membrane that should be employed in real applications depends on the purpose of the filtration. If more throughput is needed and relatively higher particles concentration is allowed, then a membrane with small
should be used. On the other hand, if the purpose of the filtration is to separate particles from the feed solution as fine as possible, then a membrane with a larger value of
should be adopted.
A prevailing characterization of filtration performance is the relationship between the flux and throughput through the membrane.
Figure 6a illustrates the so-called flux-throughput graphs for several different values of the inverse of Péclet number
. From these plots, we can observe that the total throughput
decreases with Péclet number
. This can be interpreted that for slow filtration process, less feed solution is processed. As shown, for a fixed total throughput, flux will be less for larger values of
. This phenomenon is because that by definition, the flux is directly proportional to the averaged Darcy velocity, which is smaller for larger
(consistent with the results of
Figure 3). Moreover, each flux-throughput curve in
Figure 6a is concave at the beginning and then becomes convex during the last stage of filtration. This change in curvature is consistent with results observed in the experimental systems [
32] as well as the model simulations [
21].
We run similar simulations as shown in
Figure 6b, where we fix the value of Péclet number and
at 2, then observe how
and
affect filtration performance. The conclusion is that when the membrane stickiness is enhanced (
and
increase proportionally), less feed solution is processed. This can be explained by that when more particles are deposited on the pores wall due to increment of stickiness coefficient, the pore shrinks faster leading to a smaller volume of throughput. It is worth noting that when the stickiness is very large (e.g.,: the curve with
), the flux drops dramatically during filtration process. In this case, the filtrate processed is less than a fourth of that of the membrane with
. Recalling from
Figure 5, we obtain the conclusion that membrane with higher
yields a better filtration performance as less particles will escape from the membrane. However, from
Figure 6b, we come to another conclusion that membrane with low
is preferred when our interest is to achieve more filtrate. Therefore, the selection of membrane depends vastly on the goal and the requirement of the target filtration, which may vary in different filtration scenarios.
A question of interest to manufacturers is: What is the optimum permeability profile as a function of depth through the membrane? For our model, this question translates to: What is the optimal shape of the filter pores? To answer this, we must first choose a measure of filtration performance [
18,
21,
22,
23,
29]. The most appropriate measure will vary depending on the user requirements, but for purposes of illustration, we study which initial membrane pore profile maximizes the cumulative removal of contaminants from the solvent, as well as the total throughput. As shown in
Figure 3b, the membrane pore closure mainly occurs at the upstream side, while the rest of pore remains untouched. This means that in real application, we must discard and replace the membrane, even if a large proportion of the membrane remains unused. Hence, it is efficient to have a membrane structure resulting in a uniform final porosity or pore profile, meaning that the most part of the filter is being used to remove particles. To design such a membrane with this initial pore profile, the model (
19) is reversed in time. Please note that the full advection-diffusion equation is a parabolic equation, therefore it is not reversible in time, but due to quasi-static assumption for this equation (see (
26)), we will not encounter this issue [
22]. Starting with a uniform pore profile and run the simulation backwards in time, we attain an initial pore profile which enables the filtration process to end with a uniform pore profile. Please note that to bypass the problems brought by the numerical simulation, we define a uniformly closed pore to have radius of 0.1.
Figure 7a demonstrates the evolution of pore radius for reversing time simulation with
. The solid curve demonstrates the initial profile for the pore, which closes uniformly, and as expected, the profile requires a broader radius at the pore inlet, which matches the pore shrinkage pattern shown in
Figure 3b. To investigate how the Péclet number impacts the initial pore profile,
Figure 7b is presented. As shown, there is no clear pattern on how the initial pore profile changes as
varies, but the common point in all curves is that the pore inlet should be initially wider than the pore downstream. Finally, the black curve in
Figure 7c represents the initial pore profile
which leads to a uniform closure at the final time. The red curve is the exponential fit
within
confidence bounds, when
.
5. Conclusions
In this paper, we have presented a mathematical model describing filtration performance including the separation efficiency and change of membrane morphology. In particular, the key result is an advection-diffusion equation demonstrating the change of small particle concentration in the Darcy driven flow through the membrane filter. The model focuses on the diffusion effect of small particles in the feed solution, while blocking at the pore inlet due to large particles is also included. Although our model gives a promising prediction for the filtration process, it contains several dimensionless parameters which are unknown and can vary a lot in different applications. For example, we lack empirical data to determine exact values of the following parameters,
: additional pore resistance when it is blocked by large particles;
: the stickiness coefficient and
: the dimensionless pore shrinkage rate or the adsorption rate coefficient. While the presented simulations use some tenable inputs for these parameters [
21], we believe that our model can give precise predictions when accurate data is provided for a specific application. Although our model studies the simplest membrane pore profile, which is initially uniform (
), it can be applied to any axisymmetric pore profiles characterized by a depth-dependent initial radius
. In terms of operating mechanisms, our model is simulated under prescribed pressure drop but can be readily extended to a constant flux driven flow.
In the simulations based on our assumptions and chosen parameters, the effects of particle diffusion on the particle concentration as well as the pore radius shrinkage are studied, as shown in
Figure 3b. This figure, which describes how the particle concentration in the feed solution and pore morphology evolve, indicates that particle concentration increases in a more uniform way compared to the case that the diffusion is neglected and only particle advection is considered (see
Figure 3d). The striking feature is that pore shrinks with a higher rate at the pore inlet, consistent with
Figure 3a, where the cross-sectionally averaged pore velocity is higher at the inlet. Thus, to better understand the effects of diffusion on the filtration results, we look into the change of particle concentration and total throughput with different values of the inverse of Péclet number
. The results of
Figure 4a show that the initial particle concentration at the membrane pore outlet increases whereas the total throughput decreases when a stronger diffusion effect is considered (recall that a larger value of
corresponds to a more strong diffusion scenario).
Figure 4b further studies the relationship between the throughput and particle concentration at the pore outlet for several different values of
.
From both
Figure 4a,b, since the particle concentration at the pore outlet is relatively high compared to the case that only the advection of particles is considered (
), membrane properties need to be improved to achieve a superior separation efficiency. We alter two dimensionless parameters: the stickiness coefficient
(
) and the pore shrinkage rate
(
)), to represent the change of membrane properties. Since
and
are correlated by the dimensional stickiness coefficient
, we keep the relation of
while adjusting their values. Please note that the large values of
corresponds to strong membrane-particle or particle-particle attraction; hence intuitively this should be employed in filtration application. However,
Figure 5 confirms that increasing of
results in a low throughput, which is also not desirable. Therefore, the trade-off between a smaller particle concentration or a larger throughput needs to be balanced. As for whether the particle concentration should be the priority or the total throughput should be optimized first, different filtration applications have distinct requirements and cannot be concluded arbitrarily.
Another popular characterization of filtration process is the flux-throughput plot. A new information provided by
Figure 6a is that while the throughput is fixed, the flux is less for a larger inverse of Péclet number. Similarly,
Figure 6b indicates that the flux with higher
is smaller at a certain value of throughput. Moreover, the curvature of
Figure 6a is consistent with the experimental data [
32] as well as the model simulations [
21]. Meanwhile, we notice that the filtration process is terminated when the radius closure occurs at the pore inlet, even with most part of the pore still unused. Hence, we run the simulation backwards in time to obtain a pore profile which can results in a uniform closure. The corresponding initial pore profile is presented in
Figure 7, which leads to the most efficient use of the membrane.
Although our simple model has a lot of potential and presents many promising results, there are still lots of aspects to be improved. There is one fouling regime lacking in our model: the process of cake formation, which happens when membrane pores are blocked and small particles deposit on, adding extra resistance to the filtrate [
29]. In our simulation, the filtration for a single pore is terminated when its radius shrinks to zero. However, in reality the fouling mechanism can be more complicated, and the duration of filtration process may be longer than what shown here. On the other hand, since the separation efficiency towards the end of filtration process is very poor, our approach is to neglect the effect of cake formation, which is a valid assumption. Another drawback is that as we mentioned above, our model is limited to axisymmetric pore profiles. However, in real applications, as shown in
Figure 1, the pore profile can be really complexly structured. This will be a promising field to continue our study [
28,
33,
34]. We may also deepen our study by considering the stochastic behavior of small particles during filtration process. When the flow rate is low, small particles in filtrate may not only diffuse around but also follow stochastic process, which can also be an important driving force for small particle deposition on the membrane pores wall.