Ocean Convection
Abstract
:1. Introduction
2. Mixed Layer Convection
3. Open-Ocean Convection
4. Polynya Convection
4.1. Coastal Polynyas
4.2. Offshore Polynyas
5. Summary and Future Direction
- The detailed influence of diurnal, evaporation and precipitation, and seasonal cycles on upper-ocean convection and the mixed layer, in particular in subtropical regions that experience a combination of all three cycles;
- Interactions between mixed layer convection and other upper-ocean processes such as Langmuir turbulence, submesoscale eddies, etc.;
- The impact of anthropogenic climate change on mixed layer convection.
- More observations of open-ocean convection, which are difficult because the location and timing of these events are challenging to forecast;
- The preconditioning and pathways of surface waters into convective regions, along with how the resulting dense waters feed into NADW and the MOC;
- Potential effects of anthropogenic climate change. For example, if there is a huge influx of freshwater from the melting of the Greenland Ice Sheet, whether this will decrease open-ocean convection and slow down the MOC.
- Better understanding of the complicated sea-ice-atmosphere interactions that drive polynya convection;
- The pathways of water masses across the continental shelf and their impact on dense water formation in coastal polynyas around Antarctica;
- The influence of nearby ice shelves on coastal polynyas. For example, the melting of nearby ice shelves may reduce coastal convection, but more research is required on important processes including tides, ocean-driven melting, mixing of water masses, and more;
- For offshore polynyas, there are questions about the disappearance of the strong Weddell Sea polynya observed in the 1970s and the effects of the more recently observed smaller Maud Rise polynyas.
- Exploration of different convection parameterization approaches (e.g., one-dimensional parameterizations compared to stochastic parameterizations);
- Handling convection and other co-located subgrid-scale processes in the parameterization scheme (e.g., Langmuir turbulence, shear, wave breaking, frontal eddies);
- Improved representation of mixed layer convection, open-ocean convection, and polynya convection in parameterizations will allow regional ocean models, global circulation models, and Earth systems models to better predict future climate scenarios.
Author Contributions
Funding
Conflicts of Interest
References
- Moum, J.N.; Smyth, W.D. Upper Ocean Mixing. In Encyclopedia of Ocean Sciences, 3rd ed.; Kirk, C.J., Henry, B.J., Patricia, Y.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 71–79. ISBN 978-0-12-813081-0. [Google Scholar]
- Turner, J.S. Buoyancy Effects in Fluids; Cambridge University Press: Cambridge, UK, 1973; p. 367. ISBN 978-0-51-160882-7. [Google Scholar]
- Marshall, J.; Schott, F. Open-ocean convection: Observations, theory, and models. Rev. Geophys. 1999, 37, 1–64. [Google Scholar] [CrossRef] [Green Version]
- Chor, T.; Yang, D.; Meneveau, C.; Chamecki, M. A turbulence velocity scale for predicting the fate of buoyant materials in the oceanic mixed layer. Geophys. Res. Lett. 2018, 45, 11–817. [Google Scholar] [CrossRef]
- D’Asaro, E.A. Turbulence in the upper-ocean mixed layer. Annu. Rev. Mar. Sci. 2014, 6, 101–115. [Google Scholar] [CrossRef]
- Li, Q.; Reichl, B.G.; Fox-Kemper, B.; Adcroft, A.J.; Belcher, S.E.; Danabasoglu, G.; Grant, A.L.; Griffies, S.M.; Hallberg, R.; Hara, T.; et al. Comparing ocean surface boundary vertical mixing schemes including Langmuir turbulence. J. Adv. Model. Earth Syst. 2019, 11, 3545–3592. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Fox-Kemper, B.; Zhang, H.; Dong, C. The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr. 2020, 50, 2649–2667. [Google Scholar] [CrossRef]
- NASA Aquarius Project. Aquarius Sea Surface Salinity Products. Ver. 5.0.; PO.DAAC: Pasadena, CA, USA, 2017. [Google Scholar] [CrossRef]
- Huang, P.Q.; Cen, X.R.; Lu, Y.Z.; Guo, S.X.; Zhou, S.Q. An integrated method for determining the oceanic bottom mixed layer thickness based on WOCE potential temperature profiles. J. Atmos. Ocean. Technol. 2018, 35, 2289–2301. [Google Scholar] [CrossRef]
- Gordon, A.L. Deep antarctic convection west of Maud Rise. J. Phys. Oceanogr. 1978, 8, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Campbell, E.C.; Wilson, E.A.; Moore, G.K.; Riser, S.C.; Brayton, C.E.; Mazloff, M.R.; Talley, L.D. Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies. Nature 2019, 570, 319–325. [Google Scholar] [CrossRef]
- De Lavergne, C.; Palter, J.B.; Galbraith, E.D.; Bernardello, R.; Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Chang. 2014, 4, 278–282. [Google Scholar] [CrossRef]
- Gordon, A.L. Weddell deep water variability. J. Mar. Res. 1982, 40, 199–217. [Google Scholar]
- Martinson, D.G.; Killworth, P.D.; Gordon, A.L. A convective model for the Weddell Polynya. J. Phys. Oceanogr. 1981, 11, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Killworth, P.D. Deep convection in the world ocean. Rev. Geophys. 1983, 21, 1–26. [Google Scholar] [CrossRef]
- Morales Maqueda, M.A.; Willmott, A.J.; Biggs, N.R.T. Polynya dynamics: A review of observations and modeling. Rev. Geophys. 2004, 42, RG1004. [Google Scholar] [CrossRef] [Green Version]
- Radko, T. Double-Diffusive Convection; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Haine, T.W.; Marshall, J. Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 1998, 24, 634–658. [Google Scholar] [CrossRef]
- Thomas, L.N.; Taylor, J.R.; D’Asaro, E.A.; Lee, C.M.; Klymak, J.M.; Shcherbina, A. Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J. Phys. Oceanogr. 2016, 46, 197–217. [Google Scholar] [CrossRef]
- Gayen, B.; Griffiths, R.W.; Kerr, R.C. Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech. 2016, 798, 284–298. [Google Scholar] [CrossRef]
- Middleton, L.; Vreugdenhil, C.A.; Holl, P.R.; Taylor, J.R. Numerical simulations of melt-driven double-diffusive fluxes in a turbulent boundary layer beneath an ice shelf. J. Phys. Oceanogr. 2021, 51, 403–418. [Google Scholar] [CrossRef]
- Rosevear, M.G.; Gayen, B.; Galton-Fenzi, B.K. The role of double-diffusive convection in basal melting of Antarctic ice shelves. Proc. Natl. Acad. Sci. USA 2021, 118, e2007541118. [Google Scholar] [CrossRef]
- Wilson, E.A.; Riser, S.C.; Campbell, E.C.; Wong, A.P. Winter upper-ocean stability and ice-ocean feedbacks in the sea ice-covered Southern Ocean. J. Phys. Oceanogr. 2019, 30, 1099–1117. [Google Scholar] [CrossRef]
- Everett, A.; Kohler, J.; Sundfjord, A.; Kovacs, K.M.; Torsvik, T.; Pramanik, A.; Boehme, L.; Lydersen, C. Subglacial discharge plume behaviour revealed by CTD-instrumented ringed seals. Sci. Rep. 2018, 8, 13467. [Google Scholar] [CrossRef]
- Hewitt, I.J. Subglacial plumes. Annu. Rev. Fluid Mech. 2020, 52, 145–169. [Google Scholar] [CrossRef]
- Gayen, B.; Sarkar, S. Boundary mixing by density overturns in an internal tidal beam. Geophys. Res. Lett. 2011, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Jones, N.L.; Ivey, G.N.; Rayson, M.D.; Kelly, S.M. Mixing driven by breaking nonlinear internal waves. Geophys. Res. Lett. 2020, 47, e2020GL089591. [Google Scholar] [CrossRef]
- Taylor, J.R.; Smith, K.M.; Vreugdenhil, C.A. The influence of submesoscales and vertical mixing on the export of sinking tracers in large-eddy simulations. J. Phys. Oceanogr. 2020, 50, 1319–1339. [Google Scholar] [CrossRef] [Green Version]
- Belcher, S.E.; Grant, A.L.; Hanley, K.E.; Fox-Kemper, B.; Van Roekel, L.; Sullivan, P.P.; Large, W.G.; Brown, A.; Hines, A.; Calvert, D.; et al. A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Sallée, J.B.; Pellichero, V.; Akhoudas, C.; Pauthenet, E.; Vignes, L.; Schmidtko, S.; Garabato, A.N.; Sutherl, P.; Kuusela, M. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 2021, 591, 592–598. [Google Scholar] [CrossRef]
- Talley, L.D. Descriptive Physical Oceanography: An Introduction; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Shaman, J.; Samelson, R.M.; Skyllingstad, E. Air-sea fluxes over the Gulf Stream region: Atmospheric controls and trends. J. Clim. 2010, 23, 2651–2670. [Google Scholar] [CrossRef] [Green Version]
- Paulson, C.A.; Simpson, J.J. Irradiance Measurements in the Upper Ocean. J. Phys. Oceanogr. 1977, 7, 952–956. [Google Scholar] [CrossRef]
- Brainerd, K.E.; Gregg, M.C. Diurnal restratification and turbulence in the oceanic surface mixed layer: 1. Observations. J. Geophys. Res. 1993, 98, 22645–22656. [Google Scholar] [CrossRef]
- Stramma, L.; Cornillon, P.; Weller, R.A.; Price, J.F.; Briscoe, M.G. Large diurnal sea surface temperature vari-ability: Satellite and in situ measurements. J. Phys. Oceanogr. 1986, 16, 827–837. [Google Scholar] [CrossRef] [Green Version]
- Smyth, W.D.; Moum, J.N.; Li, L.; Thorpe, S.A. Diurnal Shear Instability, the Descent of the Surface Shear Layer, and the Deep Cycle of Equatorial Turbulence. J. Phys. Oceanogr. 2013, 43, 2432–2455. [Google Scholar] [CrossRef] [Green Version]
- Moulin, A.J.; Moum, J.N.; Shroyer, E.L. Evolution of Turbulence in the Diurnal Warm Layer. J. Phys. Oceanogr. 2018, 48, 383–396. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Pham, H.T.; Smyth, W.D.; Sarkar, S.; Moum, J.N. Seasonality of Deep Cycle Turbulence in the Eastern Equatorial Pacific. J. Phys. Oceanogr. 2017, 47, 2189–2209. [Google Scholar] [CrossRef]
- Moeng, C.H.; Sullivan, P.P. A comparison of shear-and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci. 1994, 51, 999–1022. [Google Scholar] [CrossRef] [Green Version]
- Salesky, S.T.; Chamecki, M.; Bou-Zeid, E. On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteorol. 2017, 163, 41–68. [Google Scholar] [CrossRef]
- Vreugdenhil, C.A.; Taylor, J.R. Stratification effects in the turbulent boundary layer beneath a melting ice shelf: Insights from resolved large-eddy simulations. J. Phys. Oceanogr. 2019, 49, 1905–1925. [Google Scholar] [CrossRef] [Green Version]
- Skielka, U.; Soares, J.; Oliveira, A.; Servain, J. Diagnostic of the diurnal cycle of turbulence of the Equatorial Atlantic Ocean upper boundary layer. Nat. Sci. 2011, 3, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Wenegrat, J.O.; McPhaden, M.J. Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23° W). J. Geophys. Res. Oceans 2015, 120, 563–581. [Google Scholar] [CrossRef]
- Hummels, R.; Dengler, M.; Brandt, P.; Schlundt, M. Diapycnal heat flux and mixed layer heat budget within the Atlantic Cold Tongue. Clim. Dyn. 2014, 43, 3179–3199. [Google Scholar] [CrossRef] [Green Version]
- Gregg, M.C.; Peters, H.; Wesson, J.C.; Oakey, N.S.; Shay, T.J. Intensive measurements of turbulence and shear in the equatorial undercurrent. Nature 1985, 318, 140–144. [Google Scholar] [CrossRef]
- Moum, J.N.; Caldwell, D.R. Local influences on shear flow turbulence in the equatorial ocean. Science 1985, 230, 315–316. [Google Scholar] [CrossRef]
- Shroyer, E.; Tandon, A.; Sengupta, D.; Fernando, H.J.; Lucas, A.J.; Farrar, J.T.; Chattopadhyay, R.; de Szoeke, S.; Flatau, M.; Rydbeck, A.; et al. Bay of Bengal Intraseasonal Oscillations and the 2018 Monsoon Onset. Bull. Am. Meteorol. Soc. 2021, 1–44. [Google Scholar] [CrossRef]
- Kumar, S.P.; Prasad, T.G. Winter Cooling in the Northern Arabian Sea. Curr. Sci. 1996, 71, 834–841. [Google Scholar]
- De Boyer Montégut, C.; Madec, G.; Fischer, A.S.; Lazar, A.; Iudicone, D. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. 2004, 109, C12003. [Google Scholar] [CrossRef]
- Stewart, R.H. Introduction to Physical Oceanography; OAKTrust: North Charleston, SC, USA, 2008. [Google Scholar]
- Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D. Southern Ocean mixed-layer seasonal and interannual variations from combined satellite and in situ data. J. Geophys. Res. Ocean. 2017, 122, 10042–10060. [Google Scholar] [CrossRef] [Green Version]
- D’Asaro, E.A. Convection and the seeding of the North Atlantic bloom. J. Mar. Syst. 2008, 6, 233–237. [Google Scholar] [CrossRef]
- Smith, K.M.; Hamlington, P.E.; Niemeyer, K.E.; Fox-Kemper, B.; Lovenduski, N.S. Effects of Langmuir turbulence on upper ocean carbonate chemistry. J. Adv. Model. Earth Syst. 2018, 10, 3030–3048. [Google Scholar] [CrossRef]
- Taylor, J.R. Accumulation and subduction of buoyant material at submesoscale fronts. J. Phys. Oceanogr. 2018, 48, 1233–1241. [Google Scholar] [CrossRef]
- Ferrari, R.; Merrifield, S.T.; Taylor, J.R. Shutdown of convection triggers increase in surface chlorophyll. J. Mar. Syst. 2015, 147, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.R.; Ferrari, R. Shutdown of turbulent convection as a new criterion for the onset of spring phytoplankton blooms. Limnol. Oceanogr. 2011, 56, 2293–2307. [Google Scholar] [CrossRef] [Green Version]
- Houpert, L.; Durrieu de Madron, X.; Testor, P.; Bosse, A.; d’Ortenzio, F.; Bouin, M.N.; Dausse, D.; Le Goff, H.; Kunesch, S.; Labaste, M.; et al. Observations of open-ocean deep convection in the northwestern Mediterranean Sea: Seasonal and interannual variability of mixing and deep water masses for the 2007–2013 Period. J. Geophys. Res. Ocean. 2016, 121, 8139–8171. [Google Scholar] [CrossRef] [Green Version]
- Våge, K.; Pickart, R.S.; Thierry, V.; Reverdin, G.; Lee, C.M.; Petrie, B.; Agnew, T.A.; Wong, A.; Ribergaard, M.H. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci. 2009, 2, 67–72. [Google Scholar] [CrossRef]
- Frajka-Williams, E.; Rhines, P.B.; Eriksen, C.C. Horizontal stratification during deep convection in the Labrador Sea. J. Phys. Oceanogr. 2014, 44, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Lazier, J. Oceanographic conditions at Ocean Weather Ship BRAVO, 1964–1974. Atmos. Ocean 1980, 18, 227–238. [Google Scholar] [CrossRef]
- Schott, F.; Visbeck, M.; Send, U.; Fischer, J.; Stramma, L.; Desaubies, Y. Observations of deep convection in the Gulf of Lions, northern Mediterranean, during the winter of 1991/92. J. Phys. Oceanogr. 1996, 26, 505–524. [Google Scholar] [CrossRef] [Green Version]
- Maxworthy, T.; Narimousa, S. Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J. Phys. Oceanogr. 1994, 24, 865–887. [Google Scholar] [CrossRef]
- Jones, H.; Marshall, J. Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr. 1993, 23, 1009–1039. [Google Scholar] [CrossRef]
- Legg, S.; Julien, K.; McWilliams, J.; Werne, J. Vertical transport by convection plumes: Modification by rotation. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 259–262. [Google Scholar] [CrossRef]
- Legg, S.; McWilliams, J.C. Convective modifications of a geostrophic eddy field. J. Phys. Oceanogr. 2001, 31, 874–891. [Google Scholar] [CrossRef]
- Send, U.; Marshall, J. Integral effects of deep convection. J. Phys. Oceanogr. 1995, 25, 855–872. [Google Scholar] [CrossRef]
- Marshall, D. Subduction of water masses in an eddying ocean. J. Mar. Res. 1997, 55, 201–222. [Google Scholar] [CrossRef]
- Pal, A.; Chalamalla, V.K. Evolution of plumes and turbulent dynamics in deep-ocean convection. J. Fluid Mech. 2020, 889, A35. [Google Scholar] [CrossRef]
- Sohail, T.; Gayen, B.; Hogg, A.M. The Dynamics of Mixed Layer Deepening during Open-Ocean Convection. J. Phys. Oceanogr. 2020, 50, 1625–1641. [Google Scholar] [CrossRef] [Green Version]
- Coates, M.J.; Ivey, G.N. On convective turbulence and the influence of rotation. Dyn. Atmos. Ocean. 1997, 25, 217–232. [Google Scholar] [CrossRef]
- Jacobs, P.; Ivey, G.N. Rossby number regimes for isolated convection in a homogeneous, rotating fluid. Dyn. Atmos. Ocean. 1999, 30, 149–171. [Google Scholar] [CrossRef]
- Deardorff, J.W. Mixed-layer entrainment: A review. In The Symposium in Turbulence and Diffusion; Weil, J.C., Ed.; American Meteorological Society: Boston, MA, USA, 1985; pp. 39–42. [Google Scholar]
- Fernando, H.J.; Chen, R.R.; Boyer, D.L. Effects of rotation on convective turbulence. J. Fluid Mech. 1991, 228, 513–547. [Google Scholar] [CrossRef]
- Visbeck, M.; Marshall, J.; Jones, H. Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr. 1996, 26, 1721–1734. [Google Scholar] [CrossRef] [Green Version]
- Gelderloos, R.; Straneo, F.; Katsman, C.A. Mechanisms behind the temporary shutdown of deep convection in the Labrador Sea: Lessons from the Great Salinity Anomaly years 1968–71. J. Clim. 2013, 25, 6743–6755. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Holl, M.M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys. Res. Lett. 2013, 40, 1206–1211. [Google Scholar] [CrossRef]
- Wang, H.; Legg, S.; Hallberg, R. The effect of Arctic freshwater pathways on North Atlantic convection and the Atlantic meridional overturning circulation. J. Clim. 2018, 31, 5165–5188. [Google Scholar] [CrossRef]
- Hughes, G.O.; Griffiths, R.W. Horizontal Convection. Annu. Rev. Fluid Mech. 2008, 40, 185–208. [Google Scholar] [CrossRef]
- Sohail, T.; Gayen, B.; Hogg, A.M. Convection enhances mixing in the Southern Ocean. Geophys. Res. Lett. 2018, 45, 4198–4207. [Google Scholar] [CrossRef] [Green Version]
- Sohail, T.; Vreugdenhil, C.A.; Gayen, B.; Hogg, A.M. The impact of turbulence and convection on transport in the Southern Ocean. J. Geophys. Res. Ocean. 2019, 124, 4208–4221. [Google Scholar] [CrossRef] [Green Version]
- Vreugdenhil, C.A.; Gayen, B.; Griffiths, R.W. Mixing and dissipation in a geostrophic buoyancy-driven circulation. J. Geophys. Res. Ocean. 2016, 121, 6076–6091. [Google Scholar] [CrossRef]
- Gayen, B.; Griffiths, R.; Hughes, G. Stability transitions and turbulence in horizontal convection. J. Fluid Mech. 2014, 751, 698–724. [Google Scholar] [CrossRef]
- Gayen, B.; Griffiths, R. Rotating horizontal convection. Annu. Rev. Fluid Mech. 2021, 54, 556–586. [Google Scholar] [CrossRef]
- Hogg, A.M.; Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 2020, 47, e2020GL088539. [Google Scholar] [CrossRef]
- Vreugdenhil, C.A.; Griffiths, R.W.; Gayen, B. Geostrophic and chimney regimes in rotating horizontal convection with imposed heat flux. J. Fluid Mech. 2017, 823, 57–99. [Google Scholar] [CrossRef] [Green Version]
- Vreugdenhil, C.A.; Gayen, B.; Griffiths, R.W. Transport by deep convection in basin-scale geostrophic circulation: Turbulence-resolving simulations. J. Fluid Mech. 2019, 865, 681–719. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2018, 35. [Google Scholar] [CrossRef]
- Holl, D.M.; Jenkins, A. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. J. Phys. Oceanogr. 1999, 29, 1787–1800. [Google Scholar]
- Untersteiner, N. Natural desalination and equilibrium salinity profile of perennial sea ice. J. Geophys. Res. 1968, 73, 1251–1257. [Google Scholar] [CrossRef]
- Wells, A.J.; Wettlaufer, J.S.; Orszag, S.A. Brine fluxes from growing sea ice. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Orsi, A.H.; Johnson, G.C.; Bullister, J.L. Circulation, mixing, and production of Antarctic Bottom Water. Prog. Oceanogr. 1999, 43, 55–109. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Nihashi, S.; Iwamoto, K. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 1999, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Foldvik, A.; Gammelsrød, T.; Nygaard, E.; Østerhus, S. Current measurements near Ronne Ice Shelf: Implications for circulation and melting. J. Geophys. Res. Ocean. 2001, 106, 4463–4477. [Google Scholar] [CrossRef]
- Snow, K.; Rintoul, S.R.; Sloyan, B.M.; Hogg, A.M. Change in dense shelf water and Adélie Land bottom water precipitated by iceberg calving. Geophys. Res. Lett. 2018, 45, 2380–2387. [Google Scholar] [CrossRef]
- Silvano, A.; Foppert, A.; Rintoul, S.R.; Holl, P.R.; Tamura, T.; Kimura, N.; Castagno, P.; Falco, P.; Budillon, G.; Haumann, F.A.; et al. Recent recovery of Antarctic Bottom Water formation in the Ross Sea driven by climate anomalies. Nat. Geosci. 2020, 13, 780–786. [Google Scholar] [CrossRef]
- Charrassin, J.B.; Hindell, M.; Rintoul, S.R.; Roquet, F.; Sokolov, S.; Biuw, M.; Guinet, C. Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc. Natl. Acad. Sci. USA 2008, 105, 11634–11639. [Google Scholar] [CrossRef] [Green Version]
- Labrousse, S.; Williams, G.; Tamura, T.; Bestley, S.; Sallée, J.B.; Fraser, A.D.; Charrassin, J.B. Coastal polynyas: Winter oases for subadult southern elephant seals in East Antarctica. Sci. Rep. 2018, 8, 3183. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Ohshima, K.I.; Fraser, A.D.; Williams, G.D. Sea ice production variability in Antarctic coastal polynyas. J. Geophys. Res. Ocean. 2016, 121, 2967–2979. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Purkey, S.G.; Roemmich, D.; Foppert, A.; Rintoul, S.R. Spatial Variability of Antarctic Bottom Water in the Australian Antarctic Basin From 2018–2020 Captured by Deep Argo. Geophys. Res. Lett. 2020, 47, e2020GL089467. [Google Scholar] [CrossRef]
- Årthun, M.; Holl, P.R.; Nicholls, K.W.; Feltham, D.L. Eddy-driven exchange between the open ocean and a sub-ice shelf cavity. J. Phys. Oceanogr. 2013, 43, 2372–2387. [Google Scholar] [CrossRef] [Green Version]
- Chapman, D.C. Dense water formation beneath a time-dependent coastal polynya. J. Phys. Oceanogr. 1999, 29, 807–820. [Google Scholar] [CrossRef]
- Gawarkiewicz, G.; Chapman, D.C. A numerical study of dense water formation and transport on a shallow, sloping continental shelf. J. Geophys. Res. Ocean. 1995, 100, 4489–4507. [Google Scholar] [CrossRef]
- Wilchinsky, A.V.; Feltham, D.L. Generation of a buoyancy-driven coastal current by an Antarctic polynya. J. Phys. Oceanogr. 2008, 38, 1011–1032. [Google Scholar] [CrossRef] [Green Version]
- Herraiz-Borreguero, L.; Church, J.A.; Allison, I.; Peña-Molino, B.; Coleman, R.; Tomczak, M.; Craven, M. Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica. J. Geophys. Res. Ocean. 2016, 121, 4946–4965. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, K.W.; Padman, L.; Schröder, M.; Woodgate, R.A.; Jenkins, A.; Østerhus, S. Water mass modification over the continental shelf north of Ronne Ice Shelf, Antarctica. J. Geophys. Res. Ocean. 2003, 108. [Google Scholar] [CrossRef]
- Morrison, A.K.; Hogg, A.M.; Engl, M.H.; Spence, P. Warm Circumpolar Deep Water transport toward Antarctica driven by local dense water export in canyons. Science 2020, 6, eaav2516. [Google Scholar] [CrossRef]
- Pellichero, V.; Sallée, J.B.; Schmidtko, S.; Roquet, F.; Charrassin, J.B. The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing. J. Geophys. Res. Ocean. 2017, 122, 1608–1633. [Google Scholar] [CrossRef] [Green Version]
- Pellichero, V.; Sallée, J.B.; Chapman, C.C.; Downes, S.M. The Southern Ocean meridional overturning in the sea-ice sector is driven by freshwater fluxes. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Purkey, S.G.; Johnson, G.C. Antarctic Bottom Water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 2013, 26, 6105–6122. [Google Scholar] [CrossRef]
- Van Wijk, E.M.; Rintoul, S.R. Freshening drives contraction of Antarctic bottom water in the Australian Antarctic Basin. Geophys. Res. Lett. 2014, 41, 1657–1664. [Google Scholar] [CrossRef]
- Silvano, A.; Rintoul, S.R.; Peña-Molino, B.; Hobbs, W.R.; van Wijk, E.; Aoki, S.; Williams, G.D. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 2018, 4, eaap9467. [Google Scholar] [CrossRef] [Green Version]
- Moorman, R.; Morrison, A.K.; McCHogg, A. Thermal Responses to Antarctic Ice Shelf Melt in an Eddy-Rich Global Ocean-Sea Ice Model. J. Clim. 2020, 33, 6599–6620. [Google Scholar] [CrossRef]
- Huot, P.V.; Fichefet, T.; Jourdain, N.C.; Mathiot, P.; Rousset, C.; Kittel, C.; Fettweis, X. Influence of ocean tides and ice shelves on ocean-ice interactions and dense shelf water formation in the D’Urville Sea, Antarctica. Ocean. Model. 2021, 162, 101794. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Alverson, K.; Renfrew, I.A. A reconstruction of the air-sea interaction associated with the Weddell Polynya. J. Phys. Oceanogr. 2002, 32, 1685–1698. [Google Scholar] [CrossRef] [Green Version]
- Weijer, W.; Veneziani, M.; Stössel, A.; Hecht, M.W.; Jeffery, N.; Jonko, A.; Hodos, T.; Wang, H. Local atmospheric response to an open-ocean polynya in a high-resolution climate model. J. Clim. 2017, 30, 1629–1641. [Google Scholar] [CrossRef]
- Francis, D.; Eayrs, C.; Cuesta, J.; Holl, D. Polar cyclones at the origin of the reoccurrence of the Maud Rise Polynya in austral winter 2017. J. Geophys. Res. Atmos. 2019, 124, 5251–5267. [Google Scholar] [CrossRef]
- Jena, B.; Ravichandran, M.; Turner, J. Recent reoccurrence of large open-ocean polynya on the Maud Rise seamount. Geophys. Res. Lett. 2019, 46, 4320–4329. [Google Scholar] [CrossRef]
- Kurtakoti, P.; Veneziani, M.; Stössel, A.; Weijer, W. Preconditioning and formation of Maud Rise polynyas in a high-resolution Earth system model. J. Clim. 2018, 31, 9659–9678. [Google Scholar] [CrossRef] [Green Version]
- Kurtakoti, P.; Veneziani, M.; Stössel, A.; Weijer, W.; Maltrud, M. On the Generation of Weddell Sea Polynyas in a High-Resolution Earth System Model. J. Clim. 2021, 34, 2491–2510. [Google Scholar] [CrossRef]
- Cheon, W.G.; Gordon, A.L. Open-ocean polynyas and deep convection in the Southern Ocean. Sci. Rep. 2019, 9, 6935. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.L.; Visbeck, M.; Comiso, J.C. A possible link between the Weddell Polynya and the Southern Annular Mode. J. Clim. 2007, 20, 2558–2571. [Google Scholar] [CrossRef]
- Francis, D.; Mattingly, K.S.; Temimi, M.; Massom, R.; Heil, P. On the crucial role of atmospheric rivers in the two major Weddell Polynya events in 1973 and 2017 in Antarctica. Sci. Adv. 2020, 6, eabc2695. [Google Scholar] [CrossRef]
- Bernardello, R.; Marinov, I.; Palter, J.B.; Galbraith, E.D.; Sarmiento, J.L. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 2014, 41, 7262–7269. [Google Scholar] [CrossRef] [Green Version]
- Lozier, M.S.; Bacon, S.; Bower, A.S.; Cunningham, S.A.; De Jong, M.F.; De Steur, L.; Deyoung, B.; Fischer, J.; Gary, S.F.; Greenan, B.J.; et al. Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bull. Am. Meteorol. Soc. 2017, 98, 737–752. [Google Scholar] [CrossRef] [Green Version]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef] [Green Version]
- Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. Ocean. 1986, 91, 8411–8427. [Google Scholar] [CrossRef] [Green Version]
- Kuhlbrodt, T.; Monahan, A.H. Stochastic stability of open-ocean deep convection. J. Phys. Oceanogr. 2003, 33, 2764–2780. [Google Scholar] [CrossRef] [Green Version]
- Naughten, K.A.; Jenkins, A.; Holl, P.R.; Mugford, R.I.; Nicholls, K.W.; Munday, D.R. Modeling the Influence of the Weddell Polynya on the Filchner-Ronne Ice Shelf Cavity. J. Clim. 2019, 32, 5289–5303. [Google Scholar] [CrossRef] [Green Version]
- Bebieva, Y.; Speer, K. The regulation of sea ice thickness by double-diffusive processes in the Ross Gyre. J. Geophys. Res. Ocean. 2019, 124, 7068–7081. [Google Scholar] [CrossRef]
- Shaw, W.J.; Stanton, T.P. Dynamic and double-diffusive instabilities in a weak pycnocline. Part I: Observations of heat flux and diffusivity in the vicinity of Maud Rise, Weddell Sea. J. Phys. Oceanogr. 2014, 44, 1973–1991. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vreugdenhil, C.A.; Gayen, B. Ocean Convection. Fluids 2021, 6, 360. https://doi.org/10.3390/fluids6100360
Vreugdenhil CA, Gayen B. Ocean Convection. Fluids. 2021; 6(10):360. https://doi.org/10.3390/fluids6100360
Chicago/Turabian StyleVreugdenhil, Catherine A., and Bishakhdatta Gayen. 2021. "Ocean Convection" Fluids 6, no. 10: 360. https://doi.org/10.3390/fluids6100360
APA StyleVreugdenhil, C. A., & Gayen, B. (2021). Ocean Convection. Fluids, 6(10), 360. https://doi.org/10.3390/fluids6100360