Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems
Abstract
:1. Introduction
2. Governing Equations
3. Numerical Models
3.1. The Eulerian Approach
Algorithm 1: FE procedure for |
3.2. The Lagrangian Approach
3.3. Boundary Conditions
3.3.1. Eulerian Model
3.3.2. Lagrangian Model
3.3.3. FSI Coupling via Force-Displacement Co-Simulation
4. Results and Discussion
4.1. Flow around Cylinder—Single-Phase Internal Flow
4.2. Dam Break—Two-Phase Free-Surface Flow
4.3. Falling Cylinder—Two-Phase Fluid and Rigid–Solid Interaction
4.4. Flexible Gate—Two-Phase Fluid and Flexible-Solid Interaction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Common Variables and Notations | |
current and new time step variable | |
ith component of a vector | |
component of a tensor | |
sress tensor | |
deviatoric sress tensor | |
dynamic viscosity | |
divergence operator | |
gradient operator | |
Laplacian operator | |
kinematic viscosity | |
domain | |
domain boundary | |
density | |
volumetric force density | |
p | pressure |
time, time-step | |
velocity | |
FEM Variables | |
water and air variables | |
deformation-rate tensor | |
extrapolated velocity | |
quasi-Dirac delta function | |
heaviside regularizition | |
Mass correction penalty constant | |
level set function | |
air volume fraction | |
body force | |
heaviside step function | |
regularized heaviside function | |
pressure space | |
extrapolated pressure | |
velocity space | |
air-water interface | |
SPH Variables | |
predicted/intermediate variable | |
expected variable due to boundary conditions | |
particle j variable | |
SPH approximation | |
Poisson equation’s source term relaxation | |
boudnary unit normal vector | |
gradient discretization matrix | |
Laplacian discretization matrix | |
gradient correction tensor | |
indentity matrix | |
Laplacian correction tensor | |
extrapolation of a variable | |
h | kernel characteristic length |
m | particle mass |
number of total particles | |
V | particle volume |
j and i particles interaction weight |
References
- Evans, M.W.; Harlow, F.H.; Bromberg, E. The Particle-in-Cell Method for Hydrodynamic Calculations; Technical Report; Los Alamos National Lab. N. Mex.: Oak Ridge, TN, USA, 1957. [Google Scholar]
- Lucy, L.B. A numerical approach to the testing of the fission hypothesis. Astron. J. 1977, 82, 1013–1024. [Google Scholar] [CrossRef]
- Gingold, R.A.; Monaghan, J.J. Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 1977, 181, 375–389. [Google Scholar] [CrossRef]
- Monaghan, J.J. Smoothed Particle Hydrodynamics. Rep. Prog. Phys. 2005, 68, 1703–1759. [Google Scholar]
- Trask, N.; Maxey, M.; Hu, X. Compact moving least squares: An optimization framework for generating high-order compact meshless discretizations. J. Comput. Phys. 2016, 326, 596–611. [Google Scholar]
- Hu, W.; Trask, N.; Hu, X.; Pan, W. A spatially adaptive high-order meshless method for fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 2019, 355, 67–93. [Google Scholar] [CrossRef] [Green Version]
- Trask, N.; Maxey, M.; Hu, X. A compatible high-order meshless method for the Stokes equations with applications to suspension flows. J. Comput. Phys. 2018, 355, 310–326. [Google Scholar] [CrossRef] [Green Version]
- Kansa, E.; Multiquadrics, A. A scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 1990, 19, 9. [Google Scholar] [CrossRef] [Green Version]
- Tezduyar, T.E. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces. Comput. Methods Appl. Mech. Eng. 2006, 195, 2983–3000. [Google Scholar] [CrossRef]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Sussman, M.; Smereka, P.; Osher, S. A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. J. Comput. Phys. 1994, 114, 146–159. [Google Scholar] [CrossRef]
- Sussman, M.; Puckett, E.G. A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows. J. Comput. Phys. 2000, 162, 301–337. [Google Scholar] [CrossRef] [Green Version]
- Hirt, C.W.; Amsden, A.A.; Cook, J. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 1974, 14, 227–253. [Google Scholar] [CrossRef]
- Peskin, C.S. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [Google Scholar] [CrossRef]
- Tagliafierro, B.; Mancini, S.; Ropero-Giralda, P.; Domínguez, J.M.; Crespo, A.J.C.; Viccione, G. Performance Assessment of a Planing Hull Using the Smoothed Particle Hydrodynamics Method. J. Mar. Sci. Eng. 2021, 9, 244. [Google Scholar] [CrossRef]
- Fatehi, R.; Manzari, M.T. Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput. Math. Appl. 2011, 61, 482–498. [Google Scholar] [CrossRef]
- Libersky, L.; Petschek, A.; Carney, T.; Hipp, J.; Allahdadi, F. High Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response. J. Comput. Phys. 1993, 109, 67–75. [Google Scholar] [CrossRef]
- Randles, P.W.; Libersky, L.D. Smoothed Particle Hydrodynamics: Some recent improvements and applications. Comput. Methods Appl. Mech. Eng. 1996, 139, 375–408. [Google Scholar] [CrossRef]
- Trask, N.; Kim, K.; Tartakovsky, A.; Perego, M.; Parks, M.L. A Highly-Scalable Implicit SPH Code for Simulating Single- and Multi-Phase Flows in Geometrically Complex Bounded Domains; Technical Report; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA, 2015. [Google Scholar]
- Islam, M.R.I.; Chakraborty, S.; Shaw, A. On consistency and energy conservation in smoothed particle hydrodynamics. Int. J. Numer. Methods Eng. 2018, 116, 601–632. [Google Scholar] [CrossRef]
- Kees, C.E.; Farthing, M.W.; Dimakopoulos, A.; de Lataillade, T.; Akkerman, I.; Ahmadia, A.; Bentley, A.; Yang, Y.; Cozzuto, G.; Zhang, A.; et al. erdc/proteus: 1.8.0. 2019. Available online: https://zenodo.org/record/5111912#.Ya1b7rzMKis (accessed on 25 November 2021).
- Tasora, A.; Serban, R.; Mazhar, H.; Pazouki, A.; Melanz, D.; Fleischmann, J.; Taylor, M.; Sugiyama, H.; Negrut, D. Chrono: An open source multi-physics dynamics engine. In High Performance Computing in Science and Engineering—Lecture Notes in Computer Science; Kozubek, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 19–49. [Google Scholar]
- Gurtin, M.E.; Fried, E.; Anand, L. The Mechanics and Thermodynamics of Continua; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Kees, C.; Akkerman, I.; Farthing, M.; Bazilevs, Y. A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys. 2011, 230, 4536–4558. [Google Scholar] [CrossRef]
- van der Pijl, S.P.; Segal, A.; Vuik, C.; Wesseling, P. A mass-conserving Level-Set method for modelling of multi-phase flows. Int. J. Numer. Methods Fluids 2004, 47, 339–361. [Google Scholar] [CrossRef]
- Burman, E.; Claus, S.; Hansbo, P.; Larson, M.G.; Massing, A. CutFEM: Discretizing Geometry and Partial Differential Equations. Int. J. Numer. Methods Eng. 2015, 104, 472–501. [Google Scholar] [CrossRef] [Green Version]
- Ji, H.; Chen, J.; Li, Z. A New Augmented Immersed Finite Element Method without Using SVD Interpolations. Numer. Algorithms 2016, 71, 395–416. [Google Scholar] [CrossRef]
- Arnold, D.N. Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Eng. 1990, 82, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Ern, A.; Guermond, J.L. Theory and Practice of Finite Elements; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Guermond, J.L.; Salgado, A. A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 2009, 228, 2834–2846. [Google Scholar] [CrossRef]
- Hu, W.; Pan, W.; Rakhsha, M.; Negrut, D. An Overview of an SPH Technique to Maintain Second-Order Convergence for 2D and 3D Fluid Dynamics; Technical Report TR-2016-14; Simulation-Based Engineering Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2016. [Google Scholar]
- Chorin, A.J. Numerical solution of the Navier-Stokes equations. Math. Comput. 1968, 22, 745–762. [Google Scholar]
- Asai, M.; Aly, A.M.; Sonoda, Y.; Sakai, Y. A stabilized incompressible SPH method by relaxing the density invariance condition. J. Appl. Math. 2012, 2012, 139583. [Google Scholar] [CrossRef]
- Hu, H. Direct simulation of flows of solid-liquid mixtures. Int. J. Multiph. Flow 1996, 22, 335–352. [Google Scholar] [CrossRef]
- Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef] [Green Version]
- Glowinski, R.; Pan, T.W.; Hesla, T.; Joseph, D. A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiph. Flow 1999, 25, 755–794. [Google Scholar] [CrossRef]
- Kim, Y.; Peskin, C.S. A penalty immersed boundary method for a rigid body in fluid. Phys. Fluids 2016, 28, 033603. [Google Scholar] [CrossRef]
- Adami, S.; Hu, X.; Adams, N. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 2012, 231, 7057–7075. [Google Scholar] [CrossRef]
- Rakhsha, M.; Pazouki, A.; Serban, R.; Negrut, D. Using a half-implicit integration scheme for the SPH-based solution of fluid-solid interaction problems. Comput. Methods Appl. Mech. Eng. 2019, 345, 100–122. [Google Scholar] [CrossRef]
- Pazouki, A.; Negrut, D. A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow. Comput. Fluids 2015, 108, 1–12. [Google Scholar] [CrossRef]
- Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 2003, 191, 448–475. [Google Scholar] [CrossRef]
- Martin, J.C.; Moyce, W.J. Part IV. An Experimental Study of the Collapse of Liquid Columns on a Rigid Horizontal Plane. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1952, 244, 312–324. [Google Scholar] [CrossRef]
- Hughes, J.P.; Graham, D.I. Comparison of incompressible and weakly-compressible SPH models for free-surface water flows. J. Hydraul. Res. 2010, 48, 105–117. [Google Scholar] [CrossRef]
- Xu, X.; Deng, X.L. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids. Comput. Phys. Commun. 2016, 201, 43–62. [Google Scholar] [CrossRef]
- Quezada de Luna, M.; Kuzmin, D.; Kees, C.E. A Monolithic Conservative Level Set Method with Built-in Redistancing. J. Comput. Phys. 2019, 379, 262–278. [Google Scholar] [CrossRef]
- Antoci, C.; Gallati, M.; Sibilla, S. Numerical simulation of fluid–structure interaction by SPH. Comput. Struct. 2007, 85, 879–890. [Google Scholar] [CrossRef]
- Yang, Q.; Jones, V.; McCue, L. Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng. 2012, 55, 136–147. [Google Scholar] [CrossRef]
- Shabana, A. Dynamics of Multibody Systems; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Yamashita, H.; Valkeapää, A.I.; Jayakumar, P.; Sugiyama, H. Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 2015, 10, 051012. [Google Scholar] [CrossRef] [Green Version]
- Ihmsen, M.; Cornelis, J.; Solenthaler, B.; Horvath, C.; Teschner, M. Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 2014, 20, 426–435. [Google Scholar] [CrossRef] [PubMed]
Simulation | SPH Time (# Markers, # Neighbors per Marker) | FEM Time (# Triangles) |
---|---|---|
Flow around cylinder | 233/2900 (42 k, 27/93) | 1049/2797 (8 k/32 k) |
Dam break | 151/486 (54 k, 27/93) | 577/5448 (9 k/20 k) |
Falling cylinder | 464 (115 k, 27) | 622 (115 k markers) |
Flexible gate | 1652 (328 k, 27) | 6812 (16 k markers) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakhsha, M.; Kees, C.E.; Negrut, D. Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems. Fluids 2021, 6, 460. https://doi.org/10.3390/fluids6120460
Rakhsha M, Kees CE, Negrut D. Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems. Fluids. 2021; 6(12):460. https://doi.org/10.3390/fluids6120460
Chicago/Turabian StyleRakhsha, Milad, Christopher E. Kees, and Dan Negrut. 2021. "Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems" Fluids 6, no. 12: 460. https://doi.org/10.3390/fluids6120460
APA StyleRakhsha, M., Kees, C. E., & Negrut, D. (2021). Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems. Fluids, 6(12), 460. https://doi.org/10.3390/fluids6120460