Investigation of the Tribological Performance of Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects
Abstract
:1. Introduction
2. Theory
2.1. Governing Equations
2.2. Slip Modelling
2.3. Cavitation Modelling
3. Computational Analysis
3.1. Geometric Model
3.2. Solution Set Up
4. Results and Discussion
4.1. Validation
4.2. Effect of Slip Zone
4.3. Effect of Rotational Speed
5. Conclusions
- The shaft rotational speed has a strong effect on bearing performance. Load-carrying capacity exhibits a nearly linear increase with shaft rotational speed up to a certain optimal value. The corresponding optimum shaft rotational speed for the maximum load-carrying capacity of the heterogeneous slip/no-slip pattern is 3000 rpm.
- The performance parameters of heterogeneous slip/no-slip bearing under THD conditions are better, compared to the conventional bearing. The enhancement of the bearing performances consists of increased load-carrying capacity (up to 100%) and reduced maximum temperature (up to 25%).
- Based on the multiphase “mixture” cavitation model adopted here, the simulations of the flow from the inlet boundary can accurately catch the phase change of the lubricant and the hydrodynamic characteristics of the heterogeneous slip/no-slip journal bearing. The heterogeneous slip/no-slip pattern has induced cavitation phenomena.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
b | slip length: mm |
c | radial clearance, mm |
Cp | liquid specific heat capacity, J/kg.K |
Cpv | vapor specific heat capacity, J/kg.K |
Dj | journal diameter, mm |
e | eccentricity distance, mm |
Fcond | condensation coefficient |
Fevap | evaporation coefficient |
hmax | maximum film thickness, mm |
hmin | minimum film thickness, mm |
Lb | bearing length (in z-direction), mm |
Ls | circumferential length of slip zone, mm |
Lθ | circumferential length of bearing, mm |
n | rotational speed, rpm |
Ob | bearing center, mm |
Oj | journal center, mm |
p | liquid hydrodynamic pressure, Pa |
pv | vapor saturation pressure, Pa |
pbl | bubble pressure, Pa |
Rb | bearing radius, mm |
Rbl | bubble radius, mm |
Rj | journal radius, mm |
Rec | critical Reynolds number |
Rer | real critical number |
T | temperature, K |
us | slip velocity, m/s |
v | kinematic viscosity, cSt |
W | load-carrying capacity, N |
Ws | width of slip zone, mm |
αnuc | nucleation site volume fraction |
αv | vapor volume fraction |
ε | eccentricity ratio |
λ | liquid thermal conductivity, W/m.K |
λv | vapor thermal conductivity, W/m.K |
µ | liquid dynamic viscosity, Pa.s |
µv | vapor dynamic viscosity, Pa.s |
critical shear stress, Pa | |
ρ | liquid density, kg/m3 |
liquid surface tension coefficient, N/m | |
ρv | vapor density, kg/m3 |
attitude angle, deg | |
θ | circumferential angle, deg |
References
- Pit, R.; Hervet, H.; Leger, L. Direct experimental evidence of slip in hexadecane: Solid interfaces. Phys. Rev. Lett. 2000, 85, 980–983. [Google Scholar] [CrossRef]
- Baudry, J.; Charlaix, E. Experimental evidence for a large slip effect at a Non-wetting fluid-solid interface. Langmuir 2001, 17, 5232–5236. [Google Scholar] [CrossRef]
- Zhu, Y.; Granick, S. Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 2002, 88, 106102. [Google Scholar] [CrossRef] [Green Version]
- Tretheway, D.C.; Meinhart, C.D. Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 2002, 14, L9. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.H.; Westin, K.J.A.; Breuer, K.S. Apparent slip flows in hydrophilic and hydrophobic micro-channels. Phys. Fluids 2003, 15, 2897–2902. [Google Scholar] [CrossRef]
- Cottin-Bizonne, C.; Cross, B.; Steinberger, A.; Charlaix, E. Boundary slip on smooth hydrophobic surfaces: Intrinsic effects and possible artefacts. Phys. Rev. Lett. 2005, 94, 056102. [Google Scholar] [CrossRef]
- Kalin, M.; Polajnar, M. The effect of wetting and surface energy on the friction and slip in oil-lubricated contacts. Tribol. Lett. 2013, 52, 185–194. [Google Scholar] [CrossRef]
- Fortier, A.E.; Salant, R.F. Numerical analysis of a journal bearing with a heterogeneous slip/no-slip surface. ASME J. Tribol. 2005, 127, 820–825. [Google Scholar] [CrossRef] [Green Version]
- Kalavathi, G.K.; Dinesh, P.A.; Gururajan, K. Influence of roughness on porous finite journal bearing with heterogeneous slip/no-slip surface. Tribol. Int. 2016, 102, 174–181. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N. Theoretical prediction of journal bearing stability characteristics based on the extent of the slip region on the bearing surface. Tribol. Trans. 2009, 52, 750–758. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Dutt, J.K.; Pandey, R.K. Influence of hydrodynamic journal bearings with multiple slip zones on rotordynamic behavior. J. Tribol. 2017, 139, 061701. [Google Scholar] [CrossRef]
- Zhang, H.; Hua, M.; Dong, G.N.; Zhang, D.Y.; Chin, K.S. Boundary slip surface design for high speed water lubricated journal bearings. Tribol. Int. 2014, 79, 32–41. [Google Scholar] [CrossRef]
- Wu, C. Performance of hydrodynamic lubrication journal bearing with a slippage surface. Ind. Lubr. Tribol. 2008, 60, 293–298. [Google Scholar] [CrossRef]
- Ma, G.J.; Wu, C.W.; Zhou, P. Influence of wall slip on the dynamic properties of a rotor-bearing system. Tribol. Trans. 2008, 51, 204–212. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N.; Rani, A.M.A.; Nagarajan, T.; Hashim, F.M. Analysis of slider and journal bearing using partially textured slip surface. Tribol. Int. 2012, 56, 121–128. [Google Scholar] [CrossRef]
- Wang, L.L.; Lu, C.H.; Wang, M.; Fu, W.X. The numerical analysis of the radial sleeve bearing with combined surface slip. Tribol. Int. 2012, 47, 100–104. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, C.; Fillon, M.; Gu, L. Optimization performance of plain journal bearings with partial wall slip. Tribol. Int. 2020, 145, 106137. [Google Scholar] [CrossRef]
- Lin, Q.; Wei, Z.; Zhang, Y.; Wang, N. Effects of the slip surface on the tribological performances of high-speed hybrid journal bearings. Proc. Ins. Mech. Eng. Part J J. Eng. Tribol. 2016, 230, 1149–1156. [Google Scholar] [CrossRef]
- Aurelian, F.; Patrick, M.; Mohamed, H. Wall slip effects in (elasto) hydrodynamic journal bearings. Tribol. Int. 2011, 44, 868–877. [Google Scholar] [CrossRef]
- Lin, Q.; Wei, Z.; Wang, N.; Chen, W. Effect of large-area texture/slip surface on journal bearing considering cavitation. Ind. Lubr. Tribol. 2015, 67, 216–226. [Google Scholar] [CrossRef]
- Susilowati, S.; Tauviqirrahman, M.; Jamari, J.; Bayuseno, A.P. Numerical investigation of the combined effects of slip and texture on tribological performance of bearing. Tribol. Mater. Surf. Interfaces 2016, 10, 86–89. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N.; Rani, A.M.A.; Nagarajan, T.; Hashim, F.M. Analysis of micropolar and power law fluid–lubricated slider and journal bearing with partial slip–partial slip texture configuration. Tribol. Trans. 2016, 59, 896–910. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N.; Rani, A.M.A.; Mohamed, N.M.; Ya, H.H.; Awang, M.; Hashim, F.M. Static and stability analysis of partial slip texture multi-lobe journal bearings. Proc. Ins. Mech. Eng. Part J J. Eng. Tribol. 2019, 234, 567–587. [Google Scholar] [CrossRef]
- Rao, T.V.V.L.N.; Rani, A.M.A.; Mohamed, N.M.; Ya, H.H.; Awang, M.; Hashim, F.M. Analysis of magnetohydrodynamic partial slip laser bump texture slider and journal bearing. Proc. Ins. Mech. Eng. Part J J. Eng. Tribol. 2019, 233, 1921–1938. [Google Scholar] [CrossRef]
- Ausas, R.; Ragot, P.; Leiva, J.; Jai, M.; Bayada, G.; Buscaglia, G.C. The impact of the cavitation model in the analysis of microtextured lubricated journal bearings. J. Tribol. 2007, 129, 868–875. [Google Scholar] [CrossRef]
- Sun, D.C.; Brewe, D.E. A high speed photography study of cavitation in a dynamically loaded journal bearing. J. Tribol. Trans. ASME 1990, 113, 287–294. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Z. Experimental study of the film distribution of statically and dynamically loaded cylinder journal bearing. J. Shanghai Univ. 1997, 3, 500–507. [Google Scholar]
- Fang, C.; Sun, M.; Wang, X. Experimental investigation of dynamically loaded journal bearing with panoramic view of transient oil film. Lubr. Eng. 2007, 32, 54–58. [Google Scholar]
- Kasolang, S.; Ahmad, M.A. Preliminary study of pressure profile in hydrodynamic lubrication journal bearing. Procedia Eng. 2012, 41, 1743–1749. [Google Scholar] [CrossRef] [Green Version]
- Dhande, D.Y.; Pande, D.W. Multiphase flow analysis of hydrodynamic journal bearing using CFD coupled Fluid Structure Interaction considering cavitation. J. King Saud Univ. Eng. Sci. 2018, 30, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Li, S.; Fei, C.; Ai, Y.; Liem, R.P. Investigation of the effect of cavitation and journal whirl on static and dynamic characteristics of journal bearing. J. Mech. Sci. Tech. 2019, 33, 77–86. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Y.; He, Q.; Feng, J. Elastohydrodynamic behavior analysis of journal bearing using fluid–structure interaction considering cavitation. Arab. J. Sci. Eng. 2019, 44, 1305–1320. [Google Scholar] [CrossRef]
- Meng, X.; Khonsari, M.M. Viscosity wedge effect of dimpled surfaces considering cavitation effect. Tribol. Int. 2018, 122, 58–66. [Google Scholar] [CrossRef]
- Cui, J.; Kaneta, M.; Yang, P.; Yang, P. The relation between thermal wedge and thermal boundary conditions for the load-carrying capacity of a rectangular pad and a slider with parallel gaps. J. Tribol. 2016, 138, 024502. [Google Scholar] [CrossRef]
- Li, M.; Zheng, S.; Ying, G.; Li, Q. Development and validation of the 3D temperature field simulation for the tilting pad journal bearings. Comput. Therm. Sci. 2017, 9, 151–163. [Google Scholar] [CrossRef]
- Spikes, H.A. The half-wetted bearing: Part 1: Extended Reynolds equation. Proc. Ins. Mech. Eng. Part J J. Eng. Tribol. 2003, 217, 1–14. [Google Scholar] [CrossRef]
- Neto, C.; Evans, D.R.; Bonaccurso, E. Boundary slip in Newtonian liquids: A review of experimental studies. Rep. Prog. Phys. 2005, 68, 2859. [Google Scholar] [CrossRef]
- Tauviqirrahman, M.; Ismail, R.; Jamari, J.; Schipper, D.J. A study of surface texturing and boundary slip on improving the load support of lubricated parallel sliding contacts. Acta Mech. 2013, 224, 365–381. [Google Scholar] [CrossRef]
- Choo, J.H.; Glovnea, R.P.; Forrest, A.K.; Spikes, H.A. A low friction bearing based on liquid slip at the wall. ASME J. Tribol. 2007, 129, 611–620. [Google Scholar] [CrossRef]
- Wu, C.W.; Ma, G.J.; Zhou, P. Low friction and high load support capacity of slider bearing with a mixed slip surface. ASME J. Tribol. 2006, 128, 904–907. [Google Scholar] [CrossRef]
- ANSYS Fluent: User Manual, version 16.0; ANSYS Inc.: Canonsburg, PA, USA, 2017.
- Zwart, P.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamic. In Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 30 May–4 June 2004. [Google Scholar]
- Cao, D.; He, G.; Pan, H. Comparative investigation among three cavitation models for simulating cavitating venturi. J. Northwestern Polytech. Univ. 2013, 31, 596–601. [Google Scholar]
- Li, Q.; Zhang, S.; Wang, Y.; Xu, W.W.; Wang, Z. Investigations of the three-dimensional temperature field of journal bearings considering conjugate heat transfer and cavitation. Ind. Lubr. Tribol. 2019, 71, 109–118. [Google Scholar] [CrossRef]
- Muchammad, M.; Tauviqirrahman, M.; Jamari, J.; Schipper, D.J. An analytical approach on the tribological behaviour of pocketed slider bearings with boundary slip including cavitation. Lubr. Sci. 2017, 29, 133–152. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value | Unit |
---|---|---|
Journal radius Rj | 40 | mm |
Radial clearance c | 0.04 | mm |
Bearing length Lb | 80 | mm |
Attitude angle | 30 | deg |
Rotational velocity n | 100; 500; 1000; 3000; 5000 | rpm |
Oil dynamic viscosity µ (40°C) | 0.0125 | Pa.s |
Oil density ρ (40°C) | 850 | kg/m3 |
Oil specific heat Cp (40°C) | 1944 | J/kg.K |
Oil thermal conductivity λ (40°C) | 0.12789 | W/m.K |
Vapor dynamic viscosity µv | 2 × 10−5 | Pa.s |
Vapor density | 10.95 | kg/m3 |
Vapor specific heat Cpv | 2430 | J/kg.K |
Vapor thermal conductivity λv | 0.0178 | W/m.K |
Vapor saturation pressure pv | 29,185 | Pa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tauviqirrahman, M.; Afif, M.F.; Paryanto, P.; Jamari, J.; Caesarendra, W. Investigation of the Tribological Performance of Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects. Fluids 2021, 6, 48. https://doi.org/10.3390/fluids6020048
Tauviqirrahman M, Afif MF, Paryanto P, Jamari J, Caesarendra W. Investigation of the Tribological Performance of Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects. Fluids. 2021; 6(2):48. https://doi.org/10.3390/fluids6020048
Chicago/Turabian StyleTauviqirrahman, Mohammad, M. Fadhli Afif, P. Paryanto, J. Jamari, and Wahyu Caesarendra. 2021. "Investigation of the Tribological Performance of Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects" Fluids 6, no. 2: 48. https://doi.org/10.3390/fluids6020048
APA StyleTauviqirrahman, M., Afif, M. F., Paryanto, P., Jamari, J., & Caesarendra, W. (2021). Investigation of the Tribological Performance of Heterogeneous Slip/No-Slip Journal Bearing Considering Thermo-Hydrodynamic Effects. Fluids, 6(2), 48. https://doi.org/10.3390/fluids6020048