Spatial Form of a Hamiltonian Dysthe Equation for Deep-Water Gravity Waves
Abstract
:1. Introduction
2. Governing Equations
2.1. Hamiltonian Formulation
2.2. Normal Form Transformations
3. Hamiltonian Dysthe’s Equation
3.1. Modulational Ansatz
3.2. Envelope Equation for Temporal Dynamics
3.3. Reconstruction of the Free Surface
4. Alternate Model for Spatial Dynamics
4.1. Envelope Equation
4.2. Reconstruction of the Free Surface
4.3. Rescaled Variables
5. Numerical Results
5.1. Numerical Methods
5.2. Comparison with Experiments on Periodic Groups
5.3. Comparison with Experiments on Short-Wave Packets
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DNO | Dirichlet–Neumann operator |
NLS | Nonlinear Schrödinger equation |
PDE | Partial differential equation |
References
- Dysthe, K.B. Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proc. R. Soc. Lond. A 1979, 369, 105–114. [Google Scholar]
- Brinch-Nielsen, U.; Jonsson, I.G. Fourth order evolution equations and stability analysis for Stokes waves on arbitrary water depth. Wave Motion 1986, 8, 455–472. [Google Scholar] [CrossRef]
- Hogan, S.J. The fourth-order evolution equation for deep-water gravity-capillary waves. Proc. R. Soc. Lond. A 1985, 402, 359–372. [Google Scholar] [CrossRef]
- Trulsen, K.; Kliakhandler, I.; Dysthe, K.B.; Velarde, M.G. On weakly nonlinear modulation of waves on deep water. Phys. Fluids 2000, 12, 2432–2437. [Google Scholar] [CrossRef]
- Hara, T.; Mei, C.C. Frequency downshift in narrowbanded surface waves under the influence of wind. J. Fluid Mech. 1991, 230, 429–477. [Google Scholar] [CrossRef]
- Slunyaev, A.; Pelinovsky, E. Numerical simulations of modulated waves in a higher-order Dysthe equation. Water Waves 2020, 2, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.; Sulem, C. Numerical simulation of gravity waves. J. Comput. Phys. 1993, 108, 73–83. [Google Scholar] [CrossRef]
- Guyenne, P.; Grilli, S.T. Numerical study of three-dimensional overturning waves in shallow water. J. Fluid Mech. 2006, 547, 361–388. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Guyenne, P. Numerical simulation of three-dimensional nonlinear water waves. J. Comput. Phys. 2009, 228, 8446–8466. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Dyachenko, A.I.; Vasilyev, O.A. New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface. Eur. J. Mech. B Fluids 2002, 21, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Krasitskii, V.P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 1994, 272, 1–20. [Google Scholar] [CrossRef]
- Stiassnie, M. Note on the modified nonlinear Schrödinger equation for deep water waves. Wave Motion 1984, 6, 431–433. [Google Scholar] [CrossRef]
- Grande, R.; Kurianski, K.M.; Staffilani, G. On the nonlinear Dysthe equation. arXiv 2020, arXiv:2006.13392. [Google Scholar]
- Mosincat, R.; Pilod, D.; Saut, J.-C. Global well-posedness and scattering for the Dysthe equation. J. Math. Pures Appl. 2021. [Google Scholar] [CrossRef]
- Düll, W.-P.; Schneider, G.; Wayne, C.E. Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal. 2016, 220, 543–602. [Google Scholar] [CrossRef]
- Totz, N.; Wu, S. A rigorous justification of the modulation approximation to the 2D full water wave problem. Commun. Math. Phys. 2012, 310, 817–883. [Google Scholar] [CrossRef] [Green Version]
- Sulem, C.; Sulem, P.-L. The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse; Springer: New York, NY, USA, 1999. [Google Scholar]
- Gramstad, O.; Trulsen, K. Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 2011, 670, 404–426. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Sulem, C. Normal form transformations and Dysthe’s equation for the nonlinear modulation of deep-water gravity waves. Water Waves 2021, 3. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.; Guyenne, P.; Nicholls, D.P.; Sulem, C. Hamiltonian long-wave expansions for water waves over a rough bottom. Proc. R. Soc. Lond. A 2005, 461, 839–873. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.; Guyenne, P.; Sulem, C. A Hamiltonian approach to nonlinear modulation of surface water waves. Wave Motion 2010, 47, 552–563. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Sulem, C. Hamiltonian higher-order nonlinear Schrödinger equations for broader-banded waves on deep water. Eur. J. Mech. B Fluids 2012, 32, 22–31. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Sulem, C. The surface signature of internal waves. J. Fluid Mech. 2012, 710, 277–303. [Google Scholar] [CrossRef]
- Craig, W.; Sulem, C. Mapping properties of normal forms transformations for water waves. Boll. Unione Mat. Ital. 2016, 9, 289–318. [Google Scholar] [CrossRef]
- Lo, E.; Mei, C.C. A numerical study of water-wave modulation based on a higher-order nonlinear Schrödinger equation. J. Fluid Mech. 1985, 150, 395–416. [Google Scholar] [CrossRef]
- Shemer, L.; Kit, E.; Jiao, H. An experimental and numerical study of the spatial evolution of unidirectional nonlinear water-wave groups. Phys. Fluids 2002, 14, 3380–3390. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.D.; Guedes Soares, C.; Onorato, M. Modelling of the spatial evolution of extreme laboratory wave heights with the nonlinear Schrödinger and Dysthe equations. Ocean Eng. 2014, 89, 1–9. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Kachulin, D.I.; Zakharov, V.E. Super compact equation for water waves. J. Fluid Mech. 2017, 828, 661–679. [Google Scholar] [CrossRef] [Green Version]
- Dyachenko, A.I.; Zakharov, V.E. Compact equation for gravity waves on deep water. JETP Lett. 2011, 93, 701–705. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Zakharov, V.E. A dynamic equation for water waves in one horizontal dimension. Eur. J. Mech. B Fluids 2012, 32, 17–21. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Zakharov, V.E. Spatial equation for water waves. JETP Lett. 2016, 103, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Coifman, R.; Meyer, Y. Nonlinear harmonic analysis and analytic dependence. Proc. Symp. Pure Math. 1985, 43, 71–78. [Google Scholar]
- Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C. Solitary water wave interactions. Phys. Fluids 2006, 18, 057106. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.; Guyenne, P.; Sulem, C. Water waves over a random bottom. J. Fluid Mech. 2009, 640, 79–107. [Google Scholar] [CrossRef]
- Guyenne, P.; Nicholls, D.P. A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM J. Sci. Comput. 2007, 30, 81–101. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Feola, R.; Pusateri, F. Birkhoff normal form for gravity water waves. Water Waves 2021, 3. [Google Scholar] [CrossRef] [Green Version]
- Craig, W. Birkhoff normal forms for water waves. Contemp. Math. 1996, 200, 57–74. [Google Scholar]
- Craig, W.; Guyenne, P.; Kalisch, H. Hamiltonian long-wave expansions for free surfaces and interfaces. Commun. Pure Appl. Math. 2005, 58, 1587–1641. [Google Scholar] [CrossRef]
- Craig, W.; Sulem, C.; Sulem, P.-L. Nonlinear modulation of gravity waves: A rigorous approach. Nonlinearity 1992, 5, 497–522. [Google Scholar] [CrossRef]
- Segur, H.; Henderson, D.; Carter, J.; Hammack, J.; Li, C.-M.; Pheiff, D.; Socha, K. Stabilizing the Benjamin—Feir instability. J. Fluid Mech. 2005, 539, 229–271. [Google Scholar] [CrossRef] [Green Version]
- Keller, G.J. Experiments on nonlinear wave interaction. Private communication, 1982. [Google Scholar]
- Su, M.Y. Evolution of groups of gravity waves with moderate to high steepness. Phys. Fluids 1982, 25, 2167–2174. [Google Scholar] [CrossRef]
- Lake, B.M.; Yuen, H.C.; Ferguson, W.E. Envelope solitons and recurrence in nonlinear deep water waves: Theory and experiment. Rocky Mt. J. Math. 1978, 8, 105–116. [Google Scholar] [CrossRef]
- Feir, J.E. Discussion: Some results from wave pulse experiments. Proc. R. Soc. Lond. A 1967, 299, 54–58. [Google Scholar]
- Craig, W.; Schanz, U.; Sulem, C. The modulational regime of three-dimensional water waves and the Davey–Stewartson system. Ann. Inst. Henri Poincaré 1997, 14, 615–667. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guyenne, P.; Kairzhan, A.; Sulem, C.; Xu, B. Spatial Form of a Hamiltonian Dysthe Equation for Deep-Water Gravity Waves. Fluids 2021, 6, 103. https://doi.org/10.3390/fluids6030103
Guyenne P, Kairzhan A, Sulem C, Xu B. Spatial Form of a Hamiltonian Dysthe Equation for Deep-Water Gravity Waves. Fluids. 2021; 6(3):103. https://doi.org/10.3390/fluids6030103
Chicago/Turabian StyleGuyenne, Philippe, Adilbek Kairzhan, Catherine Sulem, and Boyang Xu. 2021. "Spatial Form of a Hamiltonian Dysthe Equation for Deep-Water Gravity Waves" Fluids 6, no. 3: 103. https://doi.org/10.3390/fluids6030103
APA StyleGuyenne, P., Kairzhan, A., Sulem, C., & Xu, B. (2021). Spatial Form of a Hamiltonian Dysthe Equation for Deep-Water Gravity Waves. Fluids, 6(3), 103. https://doi.org/10.3390/fluids6030103