Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids
Abstract
:Contents | ||
1 | Introduction | 2 |
2 | Materials Specified via Implicit Constitutive Relations | 3 |
2.1 Fluids | 3 | |
2.2 Solids | 4 | |
3 | Viscoelastic Rate-Type Fluids | 5 |
4 | Gibbs Free Energy-Based Approach to Viscoelastic Rate-Type Fluids | 5 |
4.1 Entropy Evolution Equation—General Case | 6 | |
4.2 Entropy Evolution Equation—Incompressible Fluids | 9 | |
4.2.1 Manipulations with Entropy Production—Direct Use of Gibbs Free Energy | 9 | |
4.2.2 Manipulations with Entropy Production—Indirect Use of Gibbs Free Energy | 10 | |
4.2.3 Constitutive Relations | 11 | |
4.2.4 Temperature Evolution Equation | 11 | |
5 | Example—Giesekus/Oldroyd-B Viscoelastic Rate-Type Fluid in the Approach Based on the Gibbs Free Energy | 11 |
5.1 Giesekus/Oldroyd-B Model via Helmholtz Free Energy—Classical Approach | 12 | |
5.2 Approach Based on Gibbs Free Energy | 14 | |
5.2.1 Oldroyd-B Model | 15 | |
5.2.2 Giesekus Model | 19 | |
5.3 Approach Based on Gibbs Free Energy and Entropy Production Maximization | 20 | |
5.3.1 Oldroyd-B Model | 21 | |
5.3.2 Giesekus Model | 23 | |
6 | Conclusions | 24 |
A Daleckii–Krein Formula and Its Consequences | 25 | |
References | 26 |
1. Introduction
2. Materials Specified via Implicit Constitutive Relations
2.1. Fluids
2.2. Solids
3. Viscoelastic Rate-Type Fluids
4. Gibbs Free Energy-Based Approach to Viscoelastic Rate-Type Fluids
4.1. Entropy Evolution Equation—General Case
4.2. Entropy Evolution Equation—Incompressible Fluids
4.2.1. Manipulations with Entropy Production—Direct Use of Gibbs Free Energy
4.2.2. Manipulations with Entropy Production—Indirect Use of Gibbs Free Energy
4.2.3. Constitutive Relations
4.2.4. Temperature Evolution Equation
5. Example—Giesekus/Oldroyd-B Viscoelastic Rate-Type Fluid in the Approach Based on the Gibbs Free Energy
5.1. Giesekus/Oldroyd-B Model via Helmholtz Free Energy—Classical Approach
5.2. Approach Based on Gibbs Free Energy
5.2.1. Oldroyd-B Model
Summary 1: Incompressible Oldroyd-B model via Gibbs free energy |
Specific Gibbs free energy: |
Reduced stress (notation): |
Entropy production: |
Material parameters: specific heat at constant volume—positive constant; shear modulus—nonnegative function, typically proportional to ; , viscosity—nonnegative functions of the primitive variables, typically constants; thermal conductivity—nonnegative function of the primitive variables, typically constant |
Evolution equations (mechanical variables m, , and thermal variable ): |
Cauchy stress tensor: |
Thermodynamical relations: |
Left Cauchy–Green tensor and Hencky strain tensor associated to the elastic response: |
Summary 2: Incompressible Oldroyd-B model via Helmholtz free energy |
Specific Helmholtz free energy: |
Entropy production: |
Material parameters: specific heat at constant volume—positive constant; shear modulus—nonnegative function, typically proportional to ; , viscosity—nonnegative functions of the primitive variables, typically constants; thermal conductivity—nonnegative function of the primitive variables, typically constant |
Evolution equations (mechanical variables m, , and thermal variable ): |
Cauchy stress tensor: |
Thermodynamical relations: |
Left Cauchy–Green tensor and Hencky strain tensor associated to the elastic response: |
5.2.2. Giesekus Model
5.3. Approach Based on Gibbs Free Energy and Entropy Production Maximization
5.3.1. Oldroyd-B Model
5.3.2. Giesekus Model
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Daleckii–Krein Formula and Its Consequences
References
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of Mechanics, 3rd ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Müller, I. Thermodynamics; Interaction of Mechanics and Mathematics; Pitman: London, UK, 1985. [Google Scholar]
- Coleman, B.D.; Noll, W. An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ration. Mech. Anal. 1960, 6, 355–370. [Google Scholar] [CrossRef]
- Rajagopal, K.R. On implicit constitutive theories. Appl. Math. 2003, 48, 279–319. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.R. On implicit constitutive theories for fluids. J. Fluid Mech. 2006, 550, 243–249. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 631–651. [Google Scholar] [CrossRef]
- Le Roux, C.; Rajagopal, K.R. Shear flows of a new class of power-law fluids. Appl. Math. 2013, 58, 153–177. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V.; Rajagopal, K.R. Generalizations of the Navier–Stokes fluid from a new perspective. Int. J. Eng. Sci. 2010, 48, 1907–1924. [Google Scholar] [CrossRef]
- Boltenhagen, P.; Hu, Y.; Matthys, E.F.; Pine, D.J. Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys. Rev. Lett. 1997, 79, 2359–2362. [Google Scholar] [CrossRef] [Green Version]
- Grob, M.; Heussinger, C.; Zippelius, A. Jamming of frictional particles: A nonequilibrium first-order phase transition. Phys. Rev. E 2014, 89, 050201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mari, R.; Seto, R.; Morris, J.F.; Denn, M.M. Nonmonotonic flow curves of shear thickening suspensions. Phys. Rev. E 2015, 91, 052302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlácová, T.; Průša, V. Tensorial implicit constitutive relations in mechanics of incompressible non-Newtonian fluids. J. Non-Newton. Fluid Mech. 2015, 216, 13–21. [Google Scholar] [CrossRef]
- Janečka, A.; Průša, V. Perspectives on using implicit type constitutive relations in the modelling of the behaviour of non-Newtonian fluids. AIP Conf. Proc. 2015, 1662, 20003. [Google Scholar] [CrossRef]
- Blatter, H. Velocity and stress-fields in grounded glaciers—A simple algorithm for including deviatoric stress gradients. J. Glaciol. 1995, 41, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Pettit, E.C.; Waddington, E.D. Ice flow at low deviatoric stress. J. Glaciol. 2003, 49, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V. Derivation of equations for continuum mechanics and thermodynamics of fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids; Giga, Y., Novotný, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–72. [Google Scholar] [CrossRef]
- Bingham, C.E. Fluidity and Plasticity; McGraw–Hill: New York, NY, USA, 1922. [Google Scholar]
- Herschel, W.H.; Bulkley, R. Konsistenzmessungen von Gummi-Benzollösungen. Colloid Polym. Sci. 1926, 39, 291–300. [Google Scholar] [CrossRef]
- Duvaut, G.; Lions, J.L. Inequalities in Mechanics and Physics; Springer: Berlin, Germany, 1976. [Google Scholar]
- Rajagopal, K.R.; Srinivasa, A.R. On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 2008, 59, 715–729. [Google Scholar] [CrossRef]
- Bulíček, M.; Gwiazda, P.; Málek, J.; Świerczewska-Gwiazda, A. On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 2012, 44, 2756–2801. [Google Scholar] [CrossRef]
- Srinivasan, S.; Karra, S. Flow of “stress power-law” fluids between parallel rotating discs with distinct axes. Int. J. Non-Linear Mech. 2015, 74, 73–83. [Google Scholar] [CrossRef]
- Narayan, S.P.A.; Rajagopal, K.R. Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid. Appl. Math. Comput. 2013, 219, 9935–9946. [Google Scholar] [CrossRef]
- Fusi, L.; Farina, A. Flow of a class of fluids defined via implicit constitutive equation down an inclined plane: Analysis of the quasi-steady regime. Eur. J. Mech. B Fluids 2017, 61, 200–208. [Google Scholar] [CrossRef]
- Fusi, L. Channel flow of viscoplastic fluids with pressure-dependent rheological parameters. Phys. Fluids 2018, 30, 073102. [Google Scholar] [CrossRef]
- Housiadas, K.D.; Georgiou, G.C.; Tanner, R.I. A note on the unbounded creeping flow past a sphere for Newtonian fluids with pressure-dependent viscosity. Int. J. Eng. Sci. 2015, 86, 1–9. [Google Scholar] [CrossRef]
- Gomez-Constante, J.P.; Rajagopal, K.R. Flow of a new class of non-Newtonian fluids in tubes of non-circular cross-sections. Proc. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fetecau, C.; Bridges, C. Analytical solutions for some unsteady flows of fluids with linear dependence of viscosity on the pressure. Inverse Probl. Sci. Eng. 2020, 378–395. [Google Scholar] [CrossRef]
- Janečka, A.; Málek, J.; Průša, V.; Tierra, G. Numerical scheme for simulation of transient flows of non-Newtonian fluids characterised by a non-monotone relation between the symmetric part of the velocity gradient and the Cauchy stress tensor. Acta Mech. 2019, 230, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Diening, L.; Kreuzer, C.; Süli, E. Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 2013, 51, 984–1015. [Google Scholar] [CrossRef] [Green Version]
- Stebel, J. Finite element approximation of Stokes-like systems with implicit constitutive relation. In Proceedings of the Conference ALGORITMY, Podbanské, Slovakia, 9–14 September 2012; pp. 291–300. [Google Scholar]
- Hirn, A.; Lanzendörfer, M.; Stebel, J. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity. IMA J. Numer. Anal. 2012, 32, 1604–1634. [Google Scholar] [CrossRef]
- Süli, E.; Tscherpel, T. Fully discrete finite element approximation of unsteady flows of implicitly constituted incompressible fluids. IMA J. Numer. Anal. 2019, 40, 801–849. [Google Scholar] [CrossRef] [Green Version]
- Farrell, P.E.; Gazca-Orozco, P.A.; Süli, E. Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation. SIAM J. Num. Anal. 2020, 58, 757–787. [Google Scholar] [CrossRef]
- Farrell, P.E.; Gazca-Orozco, P.A. An augmented lagrangian preconditioner for implicitly constituted non-Newtonian incompressible flow. SIAM J. Sci. Comp. 2020, 42, B1329–B1349. [Google Scholar] [CrossRef]
- Bulíček, M.; Gwiazda, P.; Málek, J.; Świerczewska-Gwiazda, A. On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2009, 2, 109–136. [Google Scholar] [CrossRef]
- Maringová, E.; Žabenský, J. On a Navier–Stokes–Fourier-like system capturing transitions between viscous and inviscid fluid regimes and between no-slip and perfect-slip boundary conditions. Nonlinear Anal.-Real World Appl. 2018, 41, 152–178. [Google Scholar] [CrossRef] [Green Version]
- Blechta, J.; Málek, J.; Rajagopal, K.R. On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion. SIAM J. Math. Anal. 2020, 52, 1232–1289. [Google Scholar] [CrossRef] [Green Version]
- Průša, V.; Rajagopal, K.R. On implicit constitutive relations for materials with fading memory. J. Non-Newton. Fluid Mech. 2012, 181–182, 22–29. [Google Scholar] [CrossRef]
- Karra, S.; Průša, V.; Rajagopal, K.R. On Maxwell fluids with relaxation time and viscosity depending on the pressure. Int. J. Non-Linear Mech. 2011, 46, 819–827. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Rajagopal, K.R. A model for the flow of rock glaciers. Int. J. Non-Linear Mech. 2013, 48, 59–64. [Google Scholar] [CrossRef]
- Housiadas, K.D. Internal viscoelastic flows for fluids with exponential type pressure-dependent viscosity and relaxation time. J. Rheol. 2015, 59, 769–791. [Google Scholar] [CrossRef]
- Housiadas, K.D. Viscoelastic fluids with pressure-dependent viscosity; exact analytical solutions and their singularities in Poiseuille flows. Int. J. Eng. Sci. 2020, 147, 103207. [Google Scholar] [CrossRef]
- Arcangioli, M.; Farina, A.; Fusi, L.; Saccomandi, G. Constitutive equations with pressure-dependent rheological parameters for describing ice creep. J. Glaciol. 2019, 65, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.J.A. Some properties of media defined by constitutive equations in implicit form. Int. J. Eng. Sci. 1966, 4, 155–178. [Google Scholar] [CrossRef]
- Fitzgerald, J.E. A tensorial Hencky measure of strain and strain rate for finite deformations. J. Appl. Phys. 1980, 51, 5111–5115. [Google Scholar] [CrossRef]
- Blume, J.A. On the form of the inverted stress-strain law for isotropic hyperelastic solids. Int. J. Non-Linear Mech. 1992, 27, 413–421. [Google Scholar] [CrossRef]
- Xiao, H.; Chen, L.S. Hencky’s logarithmic strain and dual stress–strain and strain–stress relations in isotropic finite hyperelasticity. Int. J. Solids Struct. 2003, 40, 1455–1463. [Google Scholar] [CrossRef]
- Xiao, H.; Bruhns, O.; Meyers, A. Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech. 2004, 168, 21–33. [Google Scholar] [CrossRef]
- Bustamante, R.; Rajagopal, K.R. A review of implicit constitutive theories to describe the response of elastic bodies. In Constitutive Modelling of Solid Continua; Merodio, J., Ogden, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 187–230. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Z. Angew. Math. Phys. 2016, 67, 86. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. Int. J. Plast. 2015, 71, 1–9. [Google Scholar] [CrossRef]
- Cichra, D.; Průša, V. A thermodynamic basis for implicit rate-type constitutive relations describing the inelastic response of solids undergoing finite deformation. Math. Mech. Solids 2020, 25, 1081286520932205. [Google Scholar] [CrossRef]
- Sfyris, D.; Bustamante, R. Use of some theorems related with the tensor equation AX + XA = H for some classes of implicit constitutive relations. Q. J. Mech. Appl. Math. 2013, 66, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Truesdell, C.; Moon, H. Inequalities sufficient to ensure semi-invertibility of isotropic functions. J. Elast. 1975, 5, 183–189. [Google Scholar] [CrossRef]
- Muliana, A.; Rajagopal, K.R.; Tscharnuter, D.; Schrittesser, B.; Saccomandi, G. Determining material properties of natural rubber using fewer material moduli in virtue of a novel constitutive approach for elastic bodies. Rubber Chem. Technol. 2018, 91, 375–389. [Google Scholar] [CrossRef]
- Xiao, H.; Bruhns, O.T.; Meyers, A. Elastoplasticity beyond small deformations. Acta Mech. 2006, 182, 31–111. [Google Scholar] [CrossRef]
- Fattal, R.; Kupferman, R. Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newton. Fluid Mech. 2004, 123, 281–285. [Google Scholar] [CrossRef]
- Fattal, R.; Kupferman, R. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newton. Fluid Mech. 2005, 126, 23–37. [Google Scholar] [CrossRef]
- Hulsen, M.A.; Fattal, R.; Kupferman, R. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms. J. Non-Newton. Fluid Mech. 2005, 127, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.R.; Srinivasa, A.R. A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 2011, 467, 39–58. [Google Scholar] [CrossRef]
- Srinivasa, A.R. On a class of Gibbs potential-based nonlinear elastic models with small strains. Acta Mech. 2015, 226, 571–583. [Google Scholar] [CrossRef]
- Gokulnath, C.; Saravanan, U.; Rajagopal, K.R. Representations for implicit constitutive relations describing non-dissipative response of isotropic materials. Z. Angew. Math. Phys. 2017, 68, 129. [Google Scholar] [CrossRef]
- Průša, V.; Rajagopal, K.R.; Tůma, K. Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids. Int. J. Non-Linear Mech. 2020, 121, 103433. [Google Scholar] [CrossRef]
- Snoeijer, J.H.; Pandey, A.; Herrada, M.A.; Eggers, J. The relationship between viscoelasticity and elasticity. Proc. R. Soc. A Math. Phys. Eng. Sci. 2020, 476, 20200419. [Google Scholar] [CrossRef] [PubMed]
- Eckart, C. The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 1948, 73, 373–382. [Google Scholar] [CrossRef]
- Rajagopal, K.R.; Srinivasa, A.R. A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 2000, 88, 207–227. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. A thermodynamically compatible model for describing the response of asphalt binders. Int. J. Pavement Eng. 2015, 16, 297–314. [Google Scholar] [CrossRef]
- Narayan, S.P.A.; Little, D.N.; Rajagopal, K.R. Modelling the nonlinear viscoelastic response of asphalt binders. Int. J. Pavement Eng. 2016, 17, 123–132. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. A thermodynamically compatible model for describing asphalt binders: Solutions of problems. Int. J. Pavement Eng. 2016, 17, 550–564. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids 2018, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Tůma, K.; Stein, J.; Průša, V.; Friedmann, E. Motion of the vitreous humour in a deforming eye–fluid-structure interaction between a nonlinear elastic solid and viscoleastic fluid. Appl. Math. Comput. 2018, 335, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Málek, J.; Průša, V.; Skřivan, T.; Süli, E. Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 2018, 30, 023101. [Google Scholar] [CrossRef]
- Řehoř, M.; Gansen, A.; Sill, C.; Polińska, P.; Westermann, S.; Dheur, J.; Baller, J.; Hale, J.S. A comparison of constitutive models for describing the flow of uncured styrene-butadiene rubber. J. Non-Newton. Fluid Mech. 2020, 286, 104398. [Google Scholar] [CrossRef]
- Sumith, S.; Kannan, K.; Shankar, K. A constitutive model for bentonite–water mixture and the effect of wall slip boundary conditions on its mechanical response. Int. J. Non-Linear Mech. 2020, 119, 103318. [Google Scholar] [CrossRef]
- Leonov, A.I. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheol. Acta 1976, 15, 85–98. [Google Scholar] [CrossRef]
- Leonov, A.I. On a class of constitutive equations for viscoelastic liquids. J. Non-Newton. Fluid Mech. 1987, 25, 1–59. [Google Scholar] [CrossRef]
- Wapperom, P.; Hulsen, M.A. Thermodynamics of viscoelastic fluids: The temperature equation. J. Rheol. 1998, 42, 999–1019. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Málek, J.; Rajagopal, K.R.; Tůma, K. On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. Int. J. Non-Linear Mech. 2015, 76, 42–47. [Google Scholar] [CrossRef]
- Narayan, S.P.A.; Little, D.N.; Rajagopal, K.R. Nonlinear viscoelastic model for describing the response of asphalt binders within the context of a Gibbs-potential-based thermodynamic framework. J. Eng. Mech. 2015, 141. [Google Scholar] [CrossRef]
- Horgan, C.O.; Saccomandi, G. Constitutive models for compressible nonlinearly elastic materials with limiting chain extensibility. J. Elast. 2004, 77, 123–138. [Google Scholar] [CrossRef]
- Dostalík, M.; Průša, V.; Skřivan, T. On diffusive variants of some classical viscoelastic rate-type models. AIP Conf. Proc. 2019, 2107, 20002. [Google Scholar] [CrossRef]
- Stumpf, H.; Hoppe, U. The application of tensor algebra on manifolds to nonlinear continuum mechanics—Invited survey article. Z. Angew. Math. Mech. 1997, 77, 327–339. [Google Scholar] [CrossRef]
- Giesekus, H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newton. Fluid Mech. 1982, 11, 69–109. [Google Scholar] [CrossRef]
- Oldroyd, J.G. On the formulation of rheological equations of state. Proc. R. Soc. A Math. Phys. Eng. Sci. 1950, 200, 523–541. [Google Scholar]
- Hron, J.; Miloš, V.; Průša, V.; Souček, O.; Tůma, K. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 2017, 95, 193–208. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, K.; Srinivasa, A. Some remarks and clarifications concerning the restrictions placed on thermodynamic processes. Int. J. Eng. Sci. 2019, 140, 26–34. [Google Scholar] [CrossRef]
- Daletskii, J.L.; Krein, S.G. Integration and differentiation of functions of Hermitian operators and applications to the theory of perturbations. In Thirteen Papers on Functional Analysis and Partial Differential Equations; American Mathematical Society: Providence, RI, USA, 1965; Volume 47, pp. 1–30. [Google Scholar]
- Bhatia, R. Positive Definite Matrices; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Bhatia, R. Matrix Analysis; Springer: Berlin/Heidelberg, Germany, 2013; Volume 169. [Google Scholar]
- Higham, N.J. Functions of Matrices; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar] [CrossRef]
- Jog, C.S. The explicit determination of the logarithm of a tensor and its derivatives. J. Elast. 2008, 93, 141–148. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Průša, V.; Rajagopal, K.R. Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids. Fluids 2021, 6, 131. https://doi.org/10.3390/fluids6030131
Průša V, Rajagopal KR. Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids. Fluids. 2021; 6(3):131. https://doi.org/10.3390/fluids6030131
Chicago/Turabian StylePrůša, Vít, and K. R. Rajagopal. 2021. "Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids" Fluids 6, no. 3: 131. https://doi.org/10.3390/fluids6030131
APA StylePrůša, V., & Rajagopal, K. R. (2021). Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids. Fluids, 6(3), 131. https://doi.org/10.3390/fluids6030131