An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Lowe, M.J.; Cawley, P. Long Range Guided Wave Inspection Usage—Current Commercial Capabilities and Research Directions; Department of Mechanical Engineering, Imperial College London: London, UK, 2006; pp. 1–40. [Google Scholar]
- Tennyson, R.C.; Morison, W.D.; Miesner, T. Pipeline Integrity Assessment Using Fiber Optic Sensors. In Pipelines 2005: Optimizing Pipeline Design, Operations and Maintenance in Today’s Economy, Proceedings of the ASCE Pipeline Division Specialty Conference (Pipelines 2005), Houston, TX, USA, 21–24 August 2005; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 803–817. [Google Scholar]
- Kishawy, H.A.; Gabbar, H.A. Review of pipeline integrity management practices. Int. J. Press. Vessel. Pip. 2010, 87, 373–380. [Google Scholar] [CrossRef]
- Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H. A Review of Water Hammer Theory and Practice. Appl. Mech. Rev. 2005, 58, 49–76. [Google Scholar] [CrossRef]
- Montgolfier, J.-M. Note sur le bélier hydraulique: Et sur la maniere d’en calculer les effets. J. Mines 1803, 13, 42–51. [Google Scholar]
- Whitehurst, J. Account of a machine for raising water, executed at Oulton, in Cheshire, in 1772. In a letter from Mr. John Whitehurst to Dr. Franklin. Philos. Trans. (1683–1775) 1775, 65, 277–279. [Google Scholar]
- Young, B.W. Design of Hydraulic Ram Pump Systems. Proc. Inst. Mech. Eng. Part A J. Power Energy 1995, 209, 313–322. [Google Scholar] [CrossRef]
- Pan, M.; Johnston, N.; Robertson, J.; Plummer, A.; Hillis, A.; Yang, H. Experimental Investigation of a Switched Inertance Hydraulic System With a High-Speed Rotary Valve. J. Dyn. Syst. Meas. Control. 2015, 137, 121003. [Google Scholar] [CrossRef]
- Yudell, A.C.; Van de Ven, J.D. Soft switching in switched inertance hydraulic circuits. Fluid Power Sys. Tech. 2016, 50060, V001T01A040. [Google Scholar]
- Yuan, C.; Pan, M.; Plummer, A. A Review of Switched Inertance Hydraulic Converter Technology. BATH/ASME 2018 Symp. Fluid Power Motion Control 2018, 51968, V001T01A013. [Google Scholar] [CrossRef]
- Wiens, T.K. Analysis and Mitigation of Valve Switching Losses in Switched Inertance Converters. ASME/BATH 2015 Symp. Fluid Power Motion Control 2015. [Google Scholar] [CrossRef]
- Johnston, N.; Pan, M.; Kudzma, S.; Wang, P. Use of Pipeline Wave Propagation Model for Measuring Unsteady Flow Rate. J. Fluids Eng. 2014, 136, 031203. [Google Scholar] [CrossRef]
- Johnston, D.N. Efficient methods for numerical modelling of laminar friction in fluid lines. J. Dyn. Syst. Meas. Control Trans. ASME 2006, 128, 829–834. [Google Scholar] [CrossRef]
- Wiens, T.; Der Buhs, J.V.; Der Buhs, J.W.V. Transmission Line Modeling of Laminar Liquid Wave Propagation in Tapered Tubes. J. Fluids Eng. 2019, 141, 101103. [Google Scholar] [CrossRef]
- Krus, P.; Weddfelt, K.; Palmberg, J.-O. Fast Pipeline Models for Simulation of Hydraulic Systems. J. Dyn. Syst. Meas. Control. 1994, 116, 132–136. [Google Scholar] [CrossRef]
- Muto, T.; Kinoshita, Y.; Yoneda, R. Dynamic Response of Tapered Fluid Lines: 1st Report, Transfer Matrix and Frequency Response. Bull. JSME 1981, 24, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Tahmeen, M.; Muto, T.; Yamada, H. Simulation of Dynamic Responses of Tapered Fluid Lines. JSME Int. J. Ser. B 2001, 44, 247–254. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, A.F.; Oldenburger, R. Dynamic Response of Fluid Lines. J. Basic Eng. 1964, 86, 589–598. [Google Scholar] [CrossRef]
- Zielke, W. Frequency-Dependent Friction in Transient Pipe Flow. J. Basic Eng. 1968, 90, 109–115. [Google Scholar] [CrossRef]
- Johnston, D.N. Numerical modelling of unsteady turbulent flow in smooth-walled pipes. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 2011, 225, 1601–1613. [Google Scholar] [CrossRef] [Green Version]
- Goodson, R.E.; Leonard, R.G. A Survey of Modeling Techniques for Fluid Line Transients. J. Basic Eng. 1972, 94, 474–482. [Google Scholar] [CrossRef]
- Sutera, S.P.; Skalak, R. The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Williams, T. The Circuit Designer’s Companion; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Olver, F.W.J.; Olde Daalhuis, A.B.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. (Eds.) NIST Digital Library of Mathematical Functions. Available online: https://dlmf.nist.gov/ (accessed on 22 April 2021).
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A.E. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiens, T.; Etminan, E. An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids 2021, 6, 170. https://doi.org/10.3390/fluids6050170
Wiens T, Etminan E. An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids. 2021; 6(5):170. https://doi.org/10.3390/fluids6050170
Chicago/Turabian StyleWiens, Travis, and Elnaz Etminan. 2021. "An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness" Fluids 6, no. 5: 170. https://doi.org/10.3390/fluids6050170
APA StyleWiens, T., & Etminan, E. (2021). An Analytical Solution for Unsteady Laminar Flow in Tubes with a Tapered Wall Thickness. Fluids, 6(5), 170. https://doi.org/10.3390/fluids6050170